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ABSTRACT 

This lecture notes gives a basic survey of the theory of hypothesis testing of quantum states 

in finite dimensional Hilbert spaces. Optimal measurement strategy for testing binary 

quantum hypotheses, which result in minimum error probability, is discussed. Collective 

and individual adaptive measurement strategies in testing hypotheses in the multiple copy 

scenario, with various upper and lower bounds on error probability, are outlined. A brief 

account on quantum channel discrimination and the role of entangled states in achieving 

enhanced precision in the task of channel discrimination is given. 

1. Introduction: 

Given two quantum states 𝜌0 and 𝜌1, estimating the true state, based on an optimal decision 

strategy, in favor of one of the binary hypotheses H0 or H1 is referred to as quantum(binary) 

hypothesis testing. The first step towards the mathematical description of quantum 

hypotheses was formulated by Helstrom [1,2].  

Further progress in testing quantum hypotheses made by Yuen, Kennedy and Lax [3,4], 

Holevo [5], Parthasarathy [6], Hayashi [7], Kargin [8], Nussbaum and Szkola [9], Audenaert 

et. al., [10, 11]. 

A quantum system is described by a density operator 𝜌, which is a non-negative operator in 

a complex Hilbert space 𝓗, with unit trace. A set consisting of finite number of positive 

operators {𝐸𝛼} obeying 

𝐸𝛼 ≥ 0,           ∑ 𝐸𝛼𝛼 = 𝐼,                                                            (1.1) 

characterize measurement with a countable number of outcomes 𝛼 = 0, 1, 2, . . ., d. This set 

is referred to as positive operator valued measure (POVM) [12]. Every element 𝐸𝛼 of the 
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POVM corresponds to a measurement outcome 𝛼. Measurement in a quantum state 𝜌 results 

in an outcome 𝛼 with probability 

𝑝𝛼 = Tr( 𝜌𝐸𝛼).                                                                   (1.2) 

In this article we confine our discussion only to finite dimensional complex Hilbert spaces. 

In binary hypothesis testing, the problem is to decide, which of the two density matrices  

𝜌0 and 𝜌1 is true, based on a measurement strategy leading to minimum probability of error. 

Suppose the hypotheses H0, H1 are given by the quantum states 𝜌0 and 𝜌1, with respective 

prior probabilities Π0 and Π1; Π0+Π1 = 1. Then, probabilities of making incorrect decision 

are given by 

𝑝(𝛽|𝐻𝛼) = Tr( 𝜌𝛼𝐸𝛼), 𝛼 ≠ 𝛽 =  0,1.                                      (1.3) 

Type I error 𝑝(1|𝐻0) = Tr( 𝜌0𝐸1) is the error of accepting the alternative hypothesis H1, 

when the null hypothesis is true. Type II error 𝑝(0|𝐻1) = Tr( 𝜌1𝐸0) occurs when 

alternative hypothesis 𝐻1 is the true one in reality, but null hypothesis is accepted.  

An optimal decision strategy requires one to recognize a measurement POVM {𝐸𝛼
opt

, 𝛼 =
0, 1 }, such that the average probability of error  

𝑃𝑒 = Π0 𝑝(1|𝐻0) + Π1 𝑝(0|𝐻1) = Π0Tr( 𝜌0𝐸1)  + Π1 Tr( 𝜌1𝐸0)                (1.4) 

is minimum. It may be noted that when 𝜌0 and 𝜌1  commute with each other, the problem 

reduces to the testing of hypotheses based on classical statistical decision strategy. The 

optimal decision in the classical hypothesis test is realized by the maximum-likelihood 

decision rule [2].  

In the case when null hypothesis 𝐻0 is assigned to 𝜌0
⊗𝑀

 (i.e., tensor product of M copies of 

the state 𝜌0), and the alternative hypothesis to the tensor product 𝜌1
⊗𝑀

 , the asymptotic error 

rate, realized in the limit of 𝑀 → ∞,  is of interest [10, 13]. In the classical setting, the error 

probability in distinguishing two probability distributions 𝑝0(𝛼) and 𝑝1(𝛼) decreases 

exponentially with the increase of the number M of statistical trials i.e.,  

𝑃𝑒
(𝑀)

~ 𝑒−𝑀𝜉(𝑝0,𝑝1).                                                    (1.5) 

Here, ξ(𝑝0, 𝑝1) > 0 denotes the error rate exponent. More specifically, in an optimal 

hypothesis test, the probability of error 𝑃𝑒
(𝑀)

 decreases exponentially with the increase of 

the number M of statistical trials. Chernoff [14] derived the following expression 

  

ξCB =  − lim
𝑀→∞

(
1

𝑀
log 𝑃𝑒,CB

(𝑀)
) = − log  inf

𝑠∈[0,1]
∑[𝑝0

s(𝛼)𝑝1
1−s

𝛼

(𝛼)],                    (1.6) 
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for the error rate exponent, which holds exactly in the asymptotic limit of M → ∞. The error 

rate exponent ξCB gives the asymptotic efficiency of testing classical hypotheses. Moreover, 

for finite number of trials, one obtains a Chernoff upper bound 𝑃𝑒,CB
(𝑀)

≥ 𝑃𝑒
(𝑀)

on the 

probability of error 𝑃𝑒
(𝑀)

.  

A quantum generalization of the Chernoff’s result remained unsolved for long time. Various 

lower and upper bounds on the optimal error exponent in terms of fidelity between the two 

density operators 𝜌0, 𝜌1  were identified [8]. Nussbaum and Szkola [9], and Audeneart et. 

al. [13] settled the issue by identifying the quantum Chernoff bound  

ξQCB =  − lim
𝑀→∞

(
1

𝑀
log 𝑃𝑒,QCB

(𝑀)
) = − log  inf

𝑠∈[0,1]
Tr( 𝜌0

s𝜌1
1−s )  ,                             (1.7) 

where 𝑃𝑒,QCB
(𝑀)

 offers an lower bound on probability of error 𝑃𝑒
(𝑀)

.  

In order to arrive at a decision with minimum error probability one has to choose optimal 

measurements for discriminating the states 𝜌0
⊗𝑀

 and 𝜌1
⊗𝑀

. Different measurement 

strategies employed have been classified into (i) collective measurements, where a single 

POVM is employed to distinguish M copies of the states 𝜌0 and  𝜌1 and (ii) individual 

measurements [15] performed on each copy of state. As collective measurements, with large 

number of copies M, are hard to achieve in experimental implementation, individual 

measurement strategies are preferred. It has been shown [15, 16] that individual adaptive 

measurements, where a sequence of individual measurements designed such that a 

measurement on any copy is optimized based on the outcome obtained in previous 

measurement on the previous copy of the sequence. Such adaptive individual measurement 

strategies are shown to result in the same precision as that of the collective strategy [15].  

In this paper, we present an overview of quantum state discrimination based on binary 

hypothesis testing both in the single copy and the multiple copy scenario. We illustrate, with 

the help of an example, an alternate approach termed as unambiguous state discrimination, 

which is employed for quantum state discrimination.  

A discussion on collective and adaptive measurements in the multiple copy situation, with 

various upper and lower bounds on error probability is given in Sec. 3. In Sec. 4 an overview 

of quantum channel discrimination and the role of entangled states in enhancing precision 

in the task of channel discrimination is presented. A brief summary is given in Sec. 5.  

2. Quantum Hypothesis Testing and State Discrimination:  

Suppose the hypotheses 𝐻𝛼, 𝛼 = 0,1  are assigned to the quantum states characterized by 

their density operators 𝜌𝛼 , 𝛼 = 0,1   respectively and measurements {𝐸𝛽 , 𝛽 = 0, 1, 2 … } are 

employed to identify which is the true state. Let 𝑝(𝛽|𝐻𝛼),  𝛽 ≠ 𝛼 denote the probability 

with which the hypothesis 𝛽 is declared to be correct, while in fact 𝛼 is the true one. 

Associating an outcome 𝛽 with the measurement 𝐸𝛽, the probability of error in 

discriminating the states 𝜌0, 𝜌1 is given by (see (1.1),(1.2) )  
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𝑝(𝛽|𝐻𝛼) = Tr( 𝜌𝛼𝐸𝛽),      ∑ 𝑝(𝛽|𝐻𝛼)

𝛽=0,1

= 1.  

If, with optimal measurements, one can achieve  

𝑝(𝛽|𝐻𝛼) = 𝛿𝛼𝛽 = {
 0,       if      𝛼 ≠ 𝛽  
 1,       if      𝛼 = 𝛽,

                                          (2.1) 

then it is possible to arrive at a correct decision and discriminate the two quantum states 

𝜌0, and 𝜌1  with no error. In the special case of orthogonal quantum states Tr(𝜌0𝜌1) = 0, 

the conditions (1.3) can be expressed in the form of a 2 × 2 matrix,  

ℙ = (
Tr(𝜌0𝐸0) Tr(𝜌0𝐸1)

Tr(𝜌1𝐸0) Tr(𝜌1𝐸1)
) = (

1 0
0 1

) . 

and one concludes that orthogonal quantum states can be discriminated perfectly. On the 

other hand, discrimination of non-orthogonal states can only be done with an error. In order 

to illustrate this, we consider an example of two pure non-orthogonal states  

𝜌𝑖 = |𝜓𝛼⟩⟨𝜓𝛼|, 𝛼 = 0,1, 

with ⟨𝜓0|𝜓1⟩ ≠ 0 .  Let 𝐸0 and 𝐸1 be the measurement operators used to discriminate these 

states. Suppose  

Tr(𝜌0𝐸0) = ⟨𝜓0|𝐸0|𝜓0⟩ =1                                                (2.2a) 

 

Tr(𝜌1𝐸1) = ⟨𝜓1|𝐸1|𝜓1⟩ =1                                                (2.2b) 

Based on the condition (see (1.1)) 

∑ 𝐸𝛼

𝛼=0,1

= 𝐼 

on measurement operators, it is readily seen that ⟨𝜓0|𝐸1|𝜓0⟩ = 0  ⇒ √𝐸1|𝜓0⟩ = 0. Then, 

by expressing |𝜓1⟩ as  

|𝜓1⟩ = 𝑎|𝜓0⟩ + 𝑏|𝜓0
⊥⟩, 

⟨𝜓0|𝜓0
⊥⟩ = 0, |𝑎|2 + |𝑏|2 = 1, 0 < |𝑏| < 1 

one obtains  

√𝐸1|𝜓1⟩ = 𝑏√𝐸1|𝜓0
⊥⟩.                                                               (2.3) 
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This in turn implies that 

⟨𝜓1|𝐸1|𝜓1⟩ = |𝑏|2 ≠ 1  

in contradiction with (2.2b).  

Remark: For a set of orthogonal states, there exists an optimum measurement scheme 

leading to perfect discrimination, i.e., with zero probability of error. It is not possible to 

achieve perfect discrimination of non-orthogonal states in the single copy scenario.  

In a more general setting of testing multiple hypotheses, a set of states 𝜌𝛼   (𝛼 = 0, 1, . . . ) 

are given with a priori probabilities Π𝛼 and a true state is to be identified from the set of 

states, by using an adequate measurement strategy. Define average cost associated with a 

given strategy as follows [2]:  

𝐶 = ∑ Π𝛼

𝛼,𝛽

𝐶𝛼𝛽Tr(𝜌𝛼𝐸𝛽), ∑ 𝐸𝛽

𝛽

= 𝐼,                                                     (2.4) 

where 𝐶𝛼𝛽 denotes the cost incurred when one arrives at a wrong decision (i.e., reaching a 

conclusion that 𝜌𝛽 is the true state when, in fact, 𝜌𝛼 happens to be the correct one). Task is 

to minimize the average cost 𝐶 by adapting an optimal decision strategy.  

Defining risk operator as,  

𝑅𝛼 = ∑ 𝐶𝛼𝛽Tr(𝜌𝛼𝐸𝛽)

𝛽

,                                                           (2.5) 

one can express the average cost (2.4) as,  

𝐶 = ∑ Π𝛼  Tr(𝜌𝛼 𝑅𝛽)

𝛼

.                                                                (2.6) 

Bayes’ strategy [17] is to assign the costs  

𝐶𝛼𝛽 = {
 1,       if      𝛼 ≠ 𝛽,
 0,       if      𝛼 = 𝛽  

                                                                   (2.7) 

following which the average cost reduces to the minimum average probability of error:  

𝑃𝑒 = min
{ 𝐸𝛽}

 𝑃err = min
{ 𝐸𝛽}

 ∑ Π𝛼  Tr(𝜌𝛼  𝐸𝛽) 

𝛼

                                              (2.8) 

Reverting back to the case of binary hypothesis testing, we define the Helstrom matrix [2]:  

Γ = Π1𝜌1 − Π0𝜌0.                                                            (2.9) 
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Substituting ∑ 𝐸𝛼𝛼=0,1 = 𝐼, the minimum average probability of error (2.8) can be 

expressed as,  

𝑃𝑒 = min
{ 𝐸0, 𝐸1=𝐼− 𝐸0}

 
1

2
{1 + Tr[Γ( 𝐸0 −  𝐸1)]}                                 (2.10) 

From the spectral decomposition of the Hermitian Helstrom matrix Γ,  

Γ = ∑  𝜆 𝑘+

𝑟

 𝑘+=1

|𝜙𝑘+
⟩⟨𝜙𝑘+

| + ∑  𝜆 𝑘−

𝑛

 𝑘−=𝑟+1

|𝜙𝑘−
⟩⟨𝜙𝑘−

|                            (2.11) 

in terms of the eigenstates |𝜙𝑘+
⟩, corresponding to the real positive/negative eigenvalues 

 𝜆 𝑘+
,  𝑘+ = 1,2, . . . 𝑟;   𝑘− = 𝑟 + 1, 𝑟 + 2, . . . , 𝑛, we obtain,  

𝑃𝑒 = min
{ 𝐸0, 𝐸1}

1

2
[1 + ∑  𝜆 𝑘+

𝑟

 𝑘+=1

⟨𝜙𝑘+
|( 𝐸0 −  𝐸1)|𝜙𝑘+

⟩ + ∑  𝜆 𝑘−

𝑛

 𝑘−=𝑟+1

⟨𝜙𝑘−
|( 𝐸0

−  𝐸1)|𝜙𝑘−
⟩] 

(2.12) 

An optimal choice of measurement { 𝐸0,  𝐸1 = 𝐼 −  𝐸0} turns out to be, 

 𝐸0 = ∑ |𝜙𝑘+
⟩⟨𝜙𝑘+

|

𝑟

 𝑘+=1

,     𝐸1 = 𝐼 −  𝐸0.                                          (2.13) 

Thus, one obtains the minimum average error probability as  

𝑃𝑒 = min
{ 𝐸0, 𝐸1}

𝑃err =
1

2
(1 − ‖Γ‖)                                                     (2.14) 

where ‖A‖1 = Tr √𝐴†𝐴 denotes the trace norm of the operator A. This result on single copy 

minimum probability of error (given by (2.14)) in testing quantum binary hypotheses is 

attributed to Holevo & Helstrom [2, 5].  

In the symmetric case of equal a priori probabilities, i.e., Π0 = Π1 =
1

2
, the minimum error 

probability is given by  

𝑃𝑒 =
1

2
[1 −

1

2
‖𝜌1 − 𝜌0‖  ].                                                   (2.15) 
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• If 𝜌0 = 𝜌1, then ‖𝜌1 − 𝜌0‖ = 0 ⇒  𝑃𝑒 =
1

2
 , i.e., decision is completely random when 

the states are identical. 

• Minimum probability of error 𝑃𝑒 = 0 for orthogonal states 𝜌0 and 𝜌1 for which 
‖𝜌1 − 𝜌0‖ = 0 i.e., the states can be discriminated with zero error. 

•  For pure states 𝜌0 = |𝜓0⟩⟨𝜓0|  and 𝜌1 = |𝜓1⟩⟨𝜓1|, the error probability (2.15) gets 

simplified:                   

𝑃𝑒 =
1

2
(1 − √1 − |⟨𝜓0|𝜓1⟩|2).                                                (2.16) 

2.1 Unambiguous State Discrimination: 

An unambiguous discrimination of two quantum states with a measurement involving two 

elements  𝐸0,  𝐸1 is possible only when the states are orthogonal.  

In an alternative approach, termed as unambiguous state discrimination, introduced by 

Ivanovic [18], the attempt is to discriminate non-orthogonal states unambiguously (i.e., with 

zero error), but the cost that one has to pay in this scheme is due to inconclusive result that 

one ends up with.  

Here, a POVM consisting of three elements { 𝐸0,  𝐸1, 𝐸2 = 𝐼 −  𝐸0 −  𝐸1} is chosen. Then, 

one identifies  

Tr(𝜌0 𝐸1) = 0,    Tr(𝜌1 𝐸0) = 0.                                              (2.17) 

But this requires an additional inconclusive result arising from the measurement element 

  𝐸2 = 𝐼 −  𝐸0 −  𝐸1 i.e., one ends up with uncertainty because Tr(𝜌0 𝐸2) ≠ 0, Tr(𝜌1 𝐸2) ≠
0. The errors arising due to inconclusive outcomes are expressed by 

Tr(𝜌0 𝐸2) = 1 − 𝑞0,   Tr(𝜌1 𝐸2) = 1 − 𝑞1,     0 ≤ 𝑞0, 𝑞1 ≤ 1                 (2.18) 

Using (2.17), and substituting  𝐸0 +  𝐸1+  𝐸2 = 𝐼, it follows that,  

Tr(𝜌0 𝐸0) =  Tr(𝜌0{𝐼 −  𝐸1 −  𝐸2}) = 𝑞0, 

Tr(𝜌1 𝐸1) =  Tr(𝜌1{𝐼 −  𝐸0 −  𝐸2}) = 𝑞1.                                     (2.19) 

Now, consider two pure non-orthogonal states 𝜌0 = |𝜓0⟩⟨𝜓0|,  𝜌1 = |𝜓1⟩⟨𝜓1|, occuring 

with a priori probabilities Π0, Π1 respectively. A measurement scheme with zero 

discrimination error, obeying the condition (2.17) can be explicitly constructed as follows:  

 𝐸0 =
𝑞0

|⟨𝜓0|𝜓1
⊥⟩|2

|𝜓1
⊥⟩⟨𝜓1

⊥| 

 𝐸1 =
𝑞1

|⟨𝜓0
⊥|𝜓1⟩|2

|𝜓0
⊥⟩⟨𝜓0

⊥|                                                        (2.20) 
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where |𝜓0
⊥⟩ and |𝜓1

⊥⟩are states orthogonal to |𝜓0⟩ and |𝜓1⟩ respectively. Then we obtain,  

𝑃inconclusive = Π0Tr(𝜌0 𝐸2) + Π1Tr(𝜌1 𝐸2)                                           (2.21) 

                                                                          = Π0𝑞0 + Π1𝑞1 

as the probability of inconclusive result. With the choice  

𝑞0 = √
Π1

Π0

|⟨𝜓0|𝜓1⟩|, 

𝑞1 = √
Π0

Π1

|⟨𝜓0|𝜓1⟩|. 

it may be seen that the associated probability of inconclusive result (2.21) reduces to  

 

𝑃inconclusive = 2√Π0Π1|⟨𝜓0|𝜓1⟩|.                                       (2.22) 

Furthermore, in the symmetric case Π0 = Π1 =
1

2
, one ends up with 𝑃inconclusive =

|⟨𝜓0|𝜓1⟩| i.e., the error arising due to inconclusive measurement outcome is proportional 

to the overlap between the states and is zero only when the states are orthogonal.  

Comparison of unambiguous state discrimination with Holevo-Helstrom minimum 

error strategy: Consider a simple example of discriminating two non-orthogonal states 

|𝜓0⟩ = |0⟩,   |𝜓1⟩ =
|0⟩ + |1⟩

√2
. 

occuring with equal a priori probabilities Π0 = Π1 =
1

2
.  

• The error probability of inconclusive outcomes (see (2.22) is given by  

𝑃inconclusive =
1

√2
≃ 0.707. 

• The minimum probability of error (see (2.16)) in the Holevo-Helstrom single copy 

discrimination scheme is given by,  

𝑃𝑒 =
1

2
(1 − √

1

2
) ≃ 0.146  

Thus, an experimenter testing which of the given two states is true one, ends up with 70% 

error if he/she adapts the unambiguous state discrimination approach. In contrast, using 
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Baysean strategy (which leads to the Holevo-Helstrom result (2.15) for discrimination), 

leads to around 15% error. This example reveals that price to be paid for an error-free or 

unambiguous discrimination is high, compared to that for the minimum error strategy. 

3. Multiple Copy State Discrimination:  

Testing hypotheses with multiple copies of quantum states is known to reduce error incurred 

[8, 11, 13]. We discuss some known results on error probabilities when M copies of the 

quantum states, i.e., 𝜌0
⊗𝑀

 and 𝜌1
⊗𝑀

  are available for quantum hypothesis testing.  

Measurement strategies with multiple copies of quantum states are broadly divided into two 

categories:  

1. Collective measurements: A single measurement is performed on all the M copies of 

the quantum states.  

2. Individual measurements: Each of the measurements (which may not be the same) 

are performed separately on individual copies.  

We proceed to outline the different measurement strategies.  

3.1. Collective Measurements:  

The Holevo-Helstrom result leading to the error probability (2.15) holds in the multiple copy 

situation too, when an optimal collective measurement is performed on 𝜌0
⊗𝑀

 and 𝜌1
⊗𝑀

   i.e.,  

𝑃𝑒
(𝑀)

=
1

2
[1 −

1

2
‖𝜌1

⊗𝑀 −  𝜌0
⊗𝑀 ‖

1
 ] ,                                                     (3.1) 

where we have chosen equal a priori probabilities Π0 = Π1 =
1

2
 for the states 𝜌0

⊗𝑀
 and 𝜌1

⊗𝑀
 

for simplicity.  

We consider some special cases:  

• Restricting to pure states 𝜌0 = |𝜓0⟩⟨𝜓0|  and 𝜌1 = |𝜓1⟩⟨𝜓1|, the M-copy error 

probability (3.1) reduces to the form,  

𝑃𝑒
(𝑀)

=
1

2
[1 − √1 − |⟨𝜓0|𝜓1⟩|2𝑀 ]                              (3.2) 

As 0 <  |⟨𝜓0|𝜓1⟩|  <  1 the error probability (3.2) declines by increasing the number of 

copies M. For 𝑀 >>  1 and |⟨𝜓0|𝜓1⟩|2𝑀 <<  1, we obtain,  

𝑃𝑒
(𝑀)

≈
1

2
[1 − (1 −

1

2
|⟨𝜓0|𝜓1⟩|2𝑀) ] =

1

4
|⟨𝜓0|𝜓1⟩|2𝑀.                         (3.3) 
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• In the asymptotic limit of M → ∞, the M-copy error probability declines exponentially 

[10, 11, 13]  

𝑃𝑒
(𝑀)

~𝑒−𝑀 ξQCB        as   𝑀 → ∞.                                           (3.4) 
where the optimal error exponent  ξQCB(𝜌0, 𝜌1) is given by,  

 ξQCB =  inf
𝑠∈[0,1]

log  Tr{ 𝜌0
s𝜌1

1−s}.                                         (3.5) 

• An upper bound on the M-copy error probability 𝑃𝑒
(𝑀)

 of (3.1) has been established [10, 

11, 13],  

𝑃𝑒
(𝑀)

≤ 𝑃𝑄𝐶𝐵
(𝑀)

,                                                               (3.6) 

based on the quantum Chernoff error exponent  ξQCB, where the error upper bound            

given by  

𝑃𝑄𝐶𝐵
(𝑀)

=
1

2
( inf

0≤𝑠≤1
Tr{ 𝜌0

s𝜌1
1−s})

𝑀
                                           (3.7) 

is referred to as the Quantum Chernoff Bound (QCB).  

3.2. Individual Measurements:  

It is known that collective measurements perform better than separate measurements done 

on individual copies of the M-copy state resulting in optimal state discrimination when 

multiple copies of the states 𝜌0,  𝜌1 are given [19]. But, when the number of copies M is 

large, collective measurements are hard to implement experimentally. Thus, it is of interest 

to explore how far one may be able to approach results of optimal state discrimination 

(realized based on collective measurement strategy) by confining to individual 

measurements i.e., to measurements performed separately on each copy of the collective M-

copy states 𝜌0
⊗𝑀

, 𝜌1
⊗𝑀

.  

Fixed individual measurements: Consider 𝜌0
⊗𝑀

 and 𝜌1
⊗𝑀

 occurring with equal 

probabilities Π0 =
1

2
 and  Π1 =

1

2
. Consider an individual measurement scheme, where 

same measurement is performed individually on each copy of 𝜌0
⊗𝑀

, 𝜌1
⊗𝑀

. In the specific 

case with measurements 𝐸0
⊗𝑀

and 𝐸1
⊗𝑀

,  with individual measurement operators 𝐸0 =

|𝜓0⟩⟨𝜓0|  and 𝐸1 = 𝐼 − |𝜓0⟩⟨𝜓0|, the error probability 𝑃ind
(𝑀)

 is given by,  

𝑃ind
(𝑀)

=
1

2
(Tr[𝜌0

⊗𝑀𝐸1
⊗𝑀] + Tr[𝜌1

⊗𝑀𝐸0
⊗𝑀]).                                    (3.8) 

• If one of the states, say 𝜌0 is pure, i.e., 𝜌0
⊗𝑀 = (|𝜓0⟩⟨𝜓0|)⊗𝑀, the error probability 

(3.8) can be simplified:  
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𝑃ind
(𝑀)

=
1

2
(Tr[𝜌0

⊗𝑀𝐸1
⊗𝑀] + Tr[𝜌1

⊗𝑀𝐸0
⊗𝑀]) 

                                    =
1

2
(Tr[𝜌0

⊗𝑀(𝐼 − |𝜓0
⊗𝑀⟩⟨𝜓0

⊗𝑀|)] +

Tr[𝜌1
⊗𝑀|𝜓0

⊗𝑀⟩⟨𝜓0
⊗𝑀|]) 

                                              

=
1

2
|⟨𝜓0|𝜌1|𝜓0⟩|𝑀.                                                                           (3.9) 

• If both the states are pure, then the error probability simplifies to  

𝑃ind
(𝑀)

=
1

2
|⟨𝜓0|𝜓1⟩|2𝑀.                                                         (3.10) 

Note that the approximate value 𝑃e
(𝑀)

≈
1

4
|⟨𝜓0|𝜓1⟩|2𝑀of M-copy error probability realized 

using collective measurement strategy (see (3.3)) is less than 𝑃ind
(𝑀)

 . In other words, error 

probability obtained using collective measurements provides a lower bound on that realized 

from individual fixed measurements. They both match (i.e., they approach the value 0) only 

in the asymptotic limit M → ∞.  

Adaptive Measurements: In an adaptive measurement scheme, the restriction on fixed 

measurement on each copy of the state is relaxed. The strategy here is to optimize the next 

consequent measurement by using the information gathered from the results of previous 

measurement. This is done in a step-by-step manner. It has been shown [15] that local 

adaptive measurements can reveal equally good performance as that of collective optimized 

measurements. Further details about adaptive measurement strategy can be found in 

references [15, 16, 20, 21].  

Bounds on error probability: Recall that quantum fidelity 𝐹(𝜌0, 𝜌1) defined by [12, 22, 

23] 

𝐹(𝜌0, 𝜌1) = [Tr (√√𝜌0𝜌1√𝜌0 )]

2

,                                              (3.11) 

 serves as a quantitative measure of how close are the states 𝜌0 and 𝜌1. It is known that the 

trace norm ‖𝜌1 −  𝜌0 ‖1 is bounded by the fidelity 𝐹(𝜌0, 𝜌1) as follows [12]:  

1 − √𝐹(𝜌0, 𝜌1) ≤
1

2
‖𝜌1 −  𝜌0 ‖1 ≤ √1 − 𝐹(𝜌0, 𝜌1) .                                (3.12) 

Using the property 𝐹(𝜌0
⊗𝑀, 𝜌1

⊗𝑀) = [𝐹(𝜌0, 𝜌1)]𝑀, the following upper and lower bounds 

[8] are realized on the optimal M-copy error probability (see (2.15)):  

1

2
(1 − √1 − [𝐹(𝜌0, 𝜌1)]𝑀) ≤ 𝑃e

(𝑀)
≤

1

2
(√𝐹(𝜌0, 𝜌1))

𝑀

.                             (3.13) 
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• If one of the states is pure, say 𝜌0 = |𝜓0⟩⟨𝜓0|, a strict upper bound on optimal error 

probability 𝑃e
(𝑀)

 follows:  

𝑃e
(𝑀)

≤
1

2
|⟨𝜓0|𝜓1⟩|𝑀.                                                         (3.14) 

• When both the states are pure i.e., 𝜌0 = |𝜓0⟩⟨𝜓0| and  𝜌1 = |𝜓1⟩⟨𝜓1|, the lower bound 

in (3.13) matches with the exact expression (3.2) on M-copy error probability.  

Another pair of computable upper and lower bounds, referred to as quantum Bhattacharya 

bounds [13, 24] are found to be useful in identifying the asymptotic limit of the M-copy 

error probability (2.15):  

1

2
(1 − √1 − [Tr (𝜌0

1
2 𝜌1

1
2)]

2𝑀

) ≤ 𝑃e
(𝑀)

≤
1

2
 [Tr (𝜌0

1
2 𝜌1

1
2)]

𝑀

.                       (3.15) 

•  The upper bounds of (3.13) and (3.15) are related to each other as,  

𝐹(𝜌0, 𝜌1) = (Tr [√√𝜌0𝜌1√𝜌0])

2

= (Tr [√√𝜌0√𝜌1√𝜌1√𝜌0])

2

 

                                                                                            = ‖𝜌0

1

2 𝜌1

1

2 ‖
1

2

,                                

(3.16) 

leading to [13]  

Tr[√𝜌0√𝜌1] ≤ ‖√𝜌0√𝜌1 ‖
1

≡ √𝐹(𝜌0, 𝜌1).                               (3.17) 

Thus, one obtains the inequality constraining the M-copy error probability:  

𝑃e
(𝑀)

≤
1

2
 [Tr (𝜌0

1
2 𝜌1

1
2)]

𝑀

≤
1

2
(√𝐹(𝜌0, 𝜌1))

𝑀

                        (3.18) 

4. Quantum Channel Discrimination:  

Suppose that an input quantum state 𝜌 goes through channels Φ𝛼  , 𝛼 = 0, 1, 2, . . .. The 

channels Φ𝛼 acting on 𝜌 result in the output states 𝜌𝛼 of the channel:  

 

Φ𝛼(𝜌) = 𝜌𝛼 .                                                                       (4.1) 
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The task is to ascertain which of the channels {Φ𝛼} the state 𝜌 went through. We confine 

here to discrimination of two channels Φ0, Φ𝛼 . 

 

 

 

 

Fig. 1. Discrimination of quantum channels Φ0, Φ1 

 

The question of distinguishing channels Φ𝛼  , 𝛼 = 0, 1 by choosing an input state 𝜌 reduces 

to that of detecting the output states 𝜌0  and 𝜌1  (see Fig. 1) with an appropriate measurement 

strategy. The single copy error-probability for binary channel discrimination is given by  

𝑃𝑒 =
1

2
(1 −

1

2
‖Φ0(𝜌) − Φ1(𝜌) ‖1) 

    =
1

2
(1 −

1

2
‖𝜌0 − 𝜌1 ‖1) .                                                              (4.2) 

An optimization over a set of all input states 𝜌 leads to the minimum error probability of 

discriminating the two channels Φ0, Φ1i.e.,  

min
{𝜌∈𝓗}

𝑃𝑒 =
1

2
(1 − max

{𝜌∈𝓗}

1

2
‖Φ0(𝜌) − Φ1(𝜌) ‖1).                                    (4.3) 

                           

4.1. Entanglement As a Resource for Channel Discrimination:  

Consider a composite bipartite state 𝜌𝐴𝐵 ∈ 𝓗𝐴 ⊗ 𝓗𝐵 as an input to the channel(s) Φ0 

(Φ1). The channels Φ0, Φ1 are designed so as to act only on one of the subsystems, say 

𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵). It is convenient to employ the notation Φ0 = Φ0
(𝐴)

  and Φ1 = Φ1
(𝐴)

. Action 

of the channels on the input state 𝜌𝐴𝐵is expressed as follows:  

[Φ0 ⊗ 𝟙](𝜌𝐴𝐵) = 𝜌𝐴𝐵
(0)

 

[Φ1 ⊗ 𝟙](𝜌𝐴𝐵) = 𝜌𝐴𝐵
(1)

. 
 

Here 𝟙 denotes the identity channel.  

The error probability 𝑃𝑒 of discriminating binary channels, in a single evaluation, is given 

by,  

Φ0 

 

𝜌 → → 𝜌0 

 
Φ1 𝜌 → 

→ 𝜌1 
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                                      𝑃𝑒 =
1

2
(1 −

1

2
‖𝜌𝐴𝐵

(0)
− 𝜌𝐴𝐵

(1)
‖) 

=
1

2
(1 −

1

2
‖[Φ0 ⊗ 𝟙](𝜌𝐴𝐵) − [Φ1 ⊗ 𝟙](𝜌𝐴𝐵)‖).                                         (4.4) 

and the minimum error probability is obtained by optimizing over the set of all input 

bipartite states 𝜌𝐴𝐵,  

min
{𝜌𝐴𝐵∈ 𝓗𝐴⊗𝓗𝐵}

𝑃𝑒

=
1

2
(1

− max
{𝜌𝐴𝐵∈ 𝓗𝐴⊗𝓗𝐵}

1

2
‖[Φ0

(𝐴)
⊗ 𝐼(𝐵)] (𝜌𝐴𝐵)

− [Φ1
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵)‖)   (4.5) 

 

=
1

2
(1 −

1

2
‖Φ0 − Φ1‖⋄)                                                                                             (4.6) 

where  

‖Φ0 − Φ1‖⋄ = max
{𝜌𝐴𝐵∈ 𝓗𝐴⊗𝓗𝐵}

‖[Φ0
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵) − [Φ1
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵)‖ 

is referred to as the diamond norm [25, 26]. 

An optimization over the set of all pure bipartite states is enough [27, 28] for achieving 

minimum error probability in (4.5). In the case of single-shot channel discrimination, Piani 

and Watrous [28] have shown that  

max
{𝜌𝐴𝐵

(sep)
∈ 𝓗𝐴⊗𝓗𝐵}

‖[Φ0
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵
(sep)

) − [Φ1
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵
(sep)

)‖ = max
𝜌∈ 𝓗𝐴

‖Φ0
(𝐴)

(𝜌) −

Φ1
(𝐵)

(𝜌)‖   

(4.7) 

Here an optimization is carried out by restricting only to the set of all separable states 

𝜌𝐴𝐵
(sep)

= ∑ 𝑝𝑖𝜌𝐴,𝑖 ⊗ 𝜌𝐵,𝑖 

𝑖

, 0 ≤ 𝑝𝑖 ≤ 1, ∑ 𝑝𝑖  

𝑖

= 1. 

In other words, there is no advantage in employing a separable composite bipartite state 

𝜌𝐴𝐵
(sep)

 as input of the channels, because the probability of error does not get reduced beyond 

the one achievable using any input state 𝜌 belonging to the Hilbert space  𝓗𝐴 itself. On the 
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otherhand, it has been identified that entangled input states help in channel discrimination 

with improved precision [27, 29–34], where it has been established that with a choice of 

entangled input state, it is possible to reduce channel discrimination error probability. More 

specifically, Piani and Watrous [28] proved 

 

‖Φ0 − Φ1‖⋄ ≥ max
{𝜌𝐴𝐵

(sep)
∈ 𝓗𝐴⊗𝓗𝐵}

‖[Φ0
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵
(sep)

)

− [Φ1
(𝐴)

⊗ 𝐼(𝐵)] (𝜌𝐴𝐵
(sep)

)‖           (4.8) 

in the case of single-shot discrimination of the channels. In other words, given an entangled 

state, it is always possible to find a pair of quantum channels such that the error probability 

of single-shot channel discrimination gets minimized. For a detailed mathematical treatment 

on channel discrimination see Ref. [26]. 

Discrimination of identity and completely depolarizing channels: Let us consider an 

example[27, 32], where a completely depolarizing channel and an identity channel, labelled 

respectively as channel 0 and channel 1, are to be discriminated based on their action on a 

pure input state |𝜓⟩ belonging to a finite d dimensional Hilbert space 𝓗𝑑. The output states 

of the channels are given by, 

𝜌0 = Φ0(𝜌) =
𝐼

𝑑
 

𝜌1 = Φ1(𝜌) = |𝜓⟩⟨𝜓| .                                                        (4.9) 
The single copy error probability in distinguishing 𝜌0 and 𝜌1 is readily found to be, 

𝑃𝑒,|𝜓⟩ =
1

2
(1 −

1

2
‖

𝐼

𝑑
− |𝜓⟩⟨𝜓|‖

1
) 

=
1

2
(1 −

1

2
[|

1

𝑑
− 1| +

𝑑 − 1

𝑑
]) =

1

2𝑑
 .                               (4.10) 

Let us consider a maximally entangled d × d state, 

|𝜓𝐴𝐵⟩ =
1

√𝑑
∑|𝑖𝐴, 𝑖𝐵⟩

𝑑

𝑖=1

 ,                                                                       (4.11) 

as input of the channels Φ0 ⊗ 𝟙, Φ1 ⊗ 𝟙. The output states are then found to be,  

𝜌𝐴𝐵
(0)

= (Φ0 ⊗ 𝟙)|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵| 

                                                            =
𝐼

𝑑
⊗ Tr𝐴[|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|] =

𝐼 ⊗  𝐼

𝑑2  
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𝜌𝐴𝐵
(1)

= (Φ1 ⊗ 𝟙)|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵| = |𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|.                          (4.12) 

 

The error-probability in discriminating the two channels, with a maximally entangled state 

is equal to 

𝑃𝑒,|𝜓𝐴𝐵⟩ =
1

2𝑑2
.                                                                        (4.13) 

This clearly shows that maximally entangled state (4.11) is advantageous in the 

discrimination of completely depolarizing and identity channels [27, 32]. 

5. Summary:  

This article presents an overview of quantum state discrimination based on binary 

hypothesis testing. A brief outline on Unambiguous state discrimination, an alternate 

approach developed for quantum state discrimination, is given, with the help of an 

illustrative example. Collective and adaptive measurements strategies employed in the case 

of multiple copy hypothesis testing are described. A discussion on computable upper and 

lower bounds on error probability in the multiple copy scenario and the error rate exponent 

in the asymptotic limit is given. Furthermore, quantum channel discrimination and the role 

of entangled states in enhancing precision in the task of channel discrimination are 

presented.  
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