
ISSN: 2582-8118 Volume 1, Issue 2; March 2021

International Journal of Research and

Analysis in Science and Engineering

Web: https://www.iarj.in/index.php/ijrase/index

57

7. Monitoring Microservices in the Distributed

Environment

Pranali Prashant Ugale
MTECH Student, Department of Computer Engineering and Information

Technology, College of Engineering Pune, Pune, India.

S. K. Gaikwad
Assistant Professor, Department of Computer Engineering and Information

Technology, College of Engineering Pune, Pune, Maharashtra, India.

ABSTRACT

It is a hurdle to monitor the huge number of microservices which are might place in different

regions physically. It is very difficult to find a point of failure in such a big environment.
Again it’s very complicated to find out what going inside in a specific actively running

service. This research paper proposed architecture for monitoring such services with less

computational and space overhead on the production site (on those machines which are

actively serving customers using microservices). Proposed architecture aims to work
efficiently, also provides the best performance in a real-time environment so that failure

investigation will become easy to handle. This architecture is highly reliable and highly

scalable without downtime can be safely used in the real-time production environment for
monitoring microservices. The proposed architecture can handle a high workload with

horizontal scalability.

KEYWORDS

Cloud, Kubernetes, docker, big data, kafka, monitoring, container, Open distro for

elasticsearch, highly-available, Scalable.

Introduction

In computer science, earlier internet
companies used to run large programs with

many modules on a single system. Which

increases the load on that system. Even
when number of requests increase they need

to add many servers with a whole replica of

that application.

The number of big cloud service providers
switch to another architecture because it’s

not possible to use monolithic architecture

due to exponential increase in number of the

user of internet and size of applications even

grows.

But some of them like stack overflow still

follow a monolithic one because of some of

International Journal of Research and Analysis in Science and Engineering

58

its advantages like the speed of execution,

simplicity in management, very few

network calls as compared to the new

architecture model.

Nowadays it’s impossible to run whole giant

code on a single system and scale that as per

need so we divide the whole module into
many operational services which can be

easily scaled up and scale down as per need.

This service-oriented architecture is called
microservice architecture. This kind of

architecture is more economical. So here

many machines are involved in the

deployment part as per need. Single service
can be run on many machines or a single

machine will run few services.

This kind of new architecture comes with its

pros and cons too. This will might be an
economical solution but here is the problem

handling too many machines and managing

them is too difficult for service providers.

Monitoring all of those machines will
become a big hurdle as the application

grows more and more and we scale them up.

In such an environment handling errors or
failures becomes very complex. Even

finding them will become a critical part.

Even if we design any solution to monitor
such architecture we need to make sure that

these things will not affect real servers

which are used in production for serving

customers.

Sometimes for designing perfect
architecture we need to understand the

whole picture in a hierarchy. Now we all

aware of the term cloud. What exactly cloud
is? It could be a collection of the number of

data centres that are connected via a

network. Datacentre have many racks, each

of them may have a large no of servers. Each
server will act as an individual virtual

machine. Each virtual machine can have one

or more containers which will allow us to

run one or many small services.

So our whole deployment part can have one

or many such servers. Which are might be

too away from each other physically so
monitoring them collectively could be a big

challenge.

Challenge: Monitoring

As discussed in the above part of the paper
we need millions of containers to run a

single big application. Logging will help us

to understand what goes inside the

container. When we encounter any issues
those logs will help users to understand the

real problem which leads to failure. If this

monitoring is not planned well will cause a

lot of issues.

Literature Review

Lei Chen, Jian Liu (2020) [1] have done a

study to find a way for collecting logs in a

distributed environment. This paper is
mainly deal with only for those applications

which use docker container. This paper

provides a way to collect logs but overhead
generated using this technique will be more.

SAMAN B (2017) [2]. His research has

been conducted to find a way to monitor

microservices. This paper also analysis
performance. Application is already

deployed using a framework spring. They

used Kieker to monitor that application. In
the first section of his paper, he explains

why there was a need of switching from

monolithic architecture to microservice

architecture. This method will be useful for
only very few architectures. This solution

will work in very few case studies.

Wang Haitao, Zhao Jing (National Institute

of Standardization, Beijing) (2019) [3]
proposed a really good method for

collecting logs in a distributed architecture.

This architecture uses Kubernetes to handle
many containers but suggests having a log

collecting agent on those machines which

Monitoring Microservices in the Distributed Environment

59

are in production. This will create too much

overhead so this solution is not optimized to

use in the real-time production environment.
Apart from this, they discuss Kafka which

will play important role in architecture. Ren

and zang (2020) [4] introduced a new way
of monitoring that is smart enough will

generate an alarm if failure is detected or

investigate. They use SpringBoot. This
architecture is used under only

microservices architecture. This method

again does not discuss clearly how the

proposed architecture will affect overall

performance.

Zamfir, M. Carabas (2020)[5] research on

which is the best possible way to manage

collected logs. They have used elastic
search for handling large no of data which is

generated from many machines will show us

how it is efficient to store in an elastic

search. But the approach does not mention
performance analysis and unable to prove

efficiency. Heavy shippers will lead things

more complex by increasing the load on
production systems. Nicola Dragoni,

Schahram Dustdar (2018) [6] proposed a

real-world case study that will show us how
performance parameters will change

drastically after switching from traditional

monolithic to microservice architecture.

This paper discusses every possible aspect
which is related to performance. How things

changed during this shift is mentioned. This

study will help us for analysis of
performance in our architecture.

Alecsandru Patra¸scu, Victor-Valeriu

(2014) [7] propose a way for logging. This
way is generic which deals with

virtualization layers in the cloud

environment. Performance parameter in

analysis using EC2. Calculated performance
parameter properly. Vlad-Andrei Zamfir,

Mihai Carabas(2019)[8] propose a

monitoring system that will work for many
architectures. This architecture will be

useful for many microservices and even can

be used in multi-virtualization.

This architecture will help in understanding

performance parameters. This architecture

uses MYSQL as centralizing database. This
will might lead to lesser performance during

querying data from a database.

Research Gaps

Ongoing research on monitoring
microservices having some loopholes which

makes them a wrong choice to follow in a

production environment directly. After a

detailed study and observation of loopholes
present in existing systems are identified

and stated below.

Most of the researches not covering the

whole architecture as per need in the

production environment. [1][5][6].

Few solutions are great but produce more

overhead which is not expected in a real-

time environment. [1][4][5]. Some research

paper only deals with specific architecture
and tools and resources which are not open

source [2][4][8].

Most important parameter is to figure out

the computational complexity of our
solution and overhead on an overall system

which is not properly estimated in many

research. [1][3][4][5].

only detection of failure is not necessary

when we are the service provider. So we
need to make the sure failure of any node

will not cause the whole system to collapse.

Management of handling such a scenario is

necessary for a service provider. [1][2][5].

Handling edge cases in every component of

the proposed solution are necessary which is

not mentioned which will lead to the

collapse of whole architecture under
unfavourable conditions [1][3]. None of the

architecture guaranty high availability as

well as scalability with performance.

International Journal of Research and Analysis in Science and Engineering

60

Objectives of Research

• Proposed architecture finds optimize

way to monitor microservices in a

distributed environment with less
overhead on those systems which are

serving customers.

• Which reduces computational power for

monitoring in the production
environment.

• Which provides real-time results than

existing architecture.

• Resulting solution only includes open-

source resources for building.

• Proposed architecture can be used in

any cloud environment like with public
or private cloud.

• Proposed solution is highly available

and scalable at any time.

Proposed Work:

In the case of monolithic architecture,
application deployment is not at all a trivial

event that demands proper attention because

it will either work or fail. Which was like

just set it and then ignore it because the
management part was not difficult. Very

less amount of things need to monitor.

A deployment part is a periodic event.

Before the virtualization concept was
coined users need to have a physical

machine with the dedicated operating

system on it to deploy an application. But as

soon as things started evolving
virtualization came up. And physical

systems replace with the virtual machine.

But still, infrastructure dependency was

there.

That means if two different code demands

two different operating systems then it was

difficult to run those codes on the same

machine. After containers came into
existence even that dependency was not

there.

Containers are isolated themselves from

everything in an environment. We can have

many containers on the same machine with

even different needs of assets.

Fig. 1. Abstract view of proposed

architecture

In case of the microservice environment

along with container deployment managing

those thousands or more no of containers is
another important task. Which needs

something that will control many

containers. That will take care of the number

of replicas we have and centralize the
control manager. To solve this issue we are

using Kubernetes.

As per the above simple architecture of the

proposed work. It consists of many
components currently we are keeping things

simple to understand the full view of the

whole architecture. Kubernetes will help us

in managing containers. Kubernetes works
great with Docker containers or any other.

We can keep track of the number of

replication which will guarantee

availability.

In many of the researches, we have found

that they directly use logstash on their

worker nodes which is a completely wrong
practice to be followed in the actual real-

Monitoring Microservices in the Distributed Environment

61

world especially when you are an

application service provider. Consuming

computational power of worker nodes and
even run the heavy process on them will

create a burden on the overall infrastructure.

So we decide to use a very lightweight

shipper on those worker nodes.

After conducting tests we have decided how

to parse logs. There are two options

available to parse them on worker node or
use extra machines to do that. Again it

depends on how much resources it will

consume to have this burden on important

worker nodes.

We use Kafka to Handel big data coming
from Kubernetes. We have conducted few

tests of the rate of generation of the log over

the rate of ingestion. Then we process

streams of data

After filtering, shipping will be done using

another Kubernetes cluster that contains few

instances of log collector logstash. We have

all logs in our elastic search index. We can
query and accordingly access those logs for

monitoring. We can have a visual tool for

real-time monitoring.

The important part about this research is it
uses all open source technologies. One can

deploy this architecture in any cloud

environment.

The monitoring part of microservice is as

important as deployment so needs to be
designed by keeping everything in mind like

how to provide high availability or having

stable solution or it must not create any
vulnerability or security issue for

deployment. The proposed solution is the

completely reliable and most important

thing it is not at all creating burden on
original architecture which will be used for

providing service to end-user.

Implementation:

This section contains a detailed view of a

proposed architecture as per production.

Kubernetes Setup:

Why Kubernetes is the best choice:
Kubernetes will help us in managing

containers. Kubernetes works great with

Docker containers.

We can keep track of the number of

replication which will guarantee
availability. Kubernetes will assist us in

handling failures too.

In Kubernetes, we have a central entity and

even some worker nodes on which we can

deploy our microservices.

Kubernetes is the place where containers are

deployed. The most important thing about

Kubernetes is we can deploy applications in

a highly available production-ready cluster.

What exactly these buzz words mean? We
can call any cluster production-ready if that

cluster is serving customers in any way, that

could be a single node cluster that is hosting
a blog site webpage or it could be a larger

cluster with millions of machines like

Netflix or large enterprise application.

There is a trade-off in setting up a

production-ready cluster because it
completely depends on a business

requirement.

Few parameters need to consider:

• To find an optimized way to monitor

microservices in a distributed

environment with less overhead on
important systems.

International Journal of Research and Analysis in Science and Engineering

62

• All components present in that cluster

must be highly available

• All the components must be in a secure

environment.

• They must be controlled from a single

point if possible.

Fig. 2. Components of Kubernetes

What exactly a term highly available means
and how to achieve that? The answer is if

instances greater than equal to 1 if fail at any

point in time, must not lead to failure of the
whole cluster. Just like that machines

greater than equal to 1 if fails at any point of

time must not lead to failure of the whole

cluster.

The solution for this is to make a cluster
failure resilient. To achieve that according

to the proposed architecture. There must be

a single replica of everything present in a
cluster at any point. People often get

confused between the multi-master

Kubernetes cluster and the highly available

one. So, it might possible that a multi-
master Kubernetes cluster fails due to the

failure of other components.

There are many ways to set up a cluster but

we need to find a balance between different
things like security, high availability, and

other things which are impacting cluster

health. There are many parameters one of

them is security. It must have a basic

security-related thing like TLS secured

communication everywhere.

Using certificated/identities can use a CSR
API. You can disable anonymous

authentication.

Enforce RBAC and node authorizers. Just

make sure to handle dashboard and helm
properly can use access control mechanism

and roles. Set a restrictive pod Security

Policy as a default.

Fig. 3. Architecture: HA setup

Kubernetes

One of the important parts here is an API

server or a web server that talks to its

database etcd where all metadata stores. API
server can be scaled horizontally. The

controller manager and scheduler only talk

to the API server. The controller manager
helps to maintain the actual state the same

as a decided one. Scheduler helps to find

pods and bind them. On the node side, we
have a base operating system and a

container runtime could be a docker or

anything. The node side also contains

kubelet which is a node agent talks to the
container runtime about what containers

need to execute.

Monitoring Microservices in the Distributed Environment

63

Kubernetes is responsible to handle failure

case of containers by self-healing property

that is by restarting containers if it fails.
Kubernetes can scale containers so make it

a scalable component. After deployment of

the main container, we are using a sidecar
container that shares some volumes with the

main container in next part will discuss the

use of those volumes and how those
volumes can be used in a few failure

scenarios.

Dedicated Lightweight Log Shipper

Why a lightweight shipper? As we want to

observe what going inside our deployed

microservices. It's difficult to observe logs
in large Kubernetes one by one. So here in

this architecture, we have something called

a Sidecar container which shares few
volumes with the main container where

microservices are deployed.

Now we need to make sure that we are not

imposing more load on real nodes which are

serving customers need. So, we want
something lightweight enough that will take

less space and will not demand many

resources.

There are many solutions available one
possible solution is to design one

lightweight log shipper or we can pick the

best available log shipper from open-source

technologies. One can have Logstash which
is the wrong choice. Logstash is a heavy

shipper which demands more resources than

a simple beat. Logstash is a more powerful
technology that is not build to just pump

logs so it's best to avoid that from the

production node. Here we need to keep in
mind few things that according to the

official document from Kubernetes one pod

must have a single container because the

sidecar will always demand resources too,
which is allocated to the main container. So

here it's important to choose technologies

wisely. In this case, our job is to just pump

important logs from the main container

nothing else no computation, no

aggregation, no filtering.

Implementing a log shipper is the best way

we are using in this architecture just to make

sure the sidecar container is asking for few
resources. Building a log shipper can be a

tedious task we are adding two processes in

log shipper one will take care of actual
shipping that is moving data from the main

container to Kafka and the other process

will take of the failure condition. This

second process will also ensure that even if
the sidecar container fails it will start

reading from the same place where it left by

accessing the pointer file which is present in

the volume of the main container.

We have sidecar containers with customized

log shippers which are highly available as is

its control by the Kubernetes manager.

Failure scenario of sidecar will be handled
by Kubernetes and pointer file, which is

tracking offset part of watched files.

How to handle big data?

Now we have many sidecar container

pumping logs. How to handle this much
amount of BIG DATA. In this case, we can't

use directly Logstash. Logstash could not

handle this much data coming with high
speed and can crash. The solution to this

problem is to have something like a buffer

that can either handle big data or it can
process data that is coming in the black box

with high frequency and big volume. There

are many big data handling tools are

available under open-source license few of
them are just designed to handle stream

processing.

We can have Apache spark, Fling, Kafka,

and Akka streams. Apache Kafka can
handle volume and velocity can work with

International Journal of Research and Analysis in Science and Engineering

64

logs efficiently [9], due to some amazing

features like high availability, security, and

performance. We have selected apache
Kafka as a buffer in between log shipper and

Logstash which will aggregate and filter

data due to its best performance as

compared to others[9].

Fig. 4. Apache Kafka ecosystem

What exactly apache Kafka is and how it

will be useful in this architecture?

Here problem is to store events. Events have

some state and description. It has a

timestamp like when it happened. The

primary idea is event is an indication of the
time when that thing took place. We use an

ordered entity for that called as called a log.

Now log has states what happens and when
that happens. Apache is Kafka is built to

manage logs using a historical term called a

topic. The topic contains an ordered

collection of logs stored durably. Topics can
be small or could be too large there is

nothing economic about their structures or

they can remember data for a long time or
they can remember data for just few

seconds. Each thing in a topic represents a

partial thing from an event.

Another use case of Kafka in microservice
architecture each service is very small they

talk to each other through Kafka topics

sometimes. Each of these services can

consume massage from a Kafka topic and
do some computation and produce massage

to another Kafka topic it will give that to

another microservice and could be used for
further analysis. This basic usage of Kafka

can be used in this architecture for saving

Logstash to handle BIG DATA. Kafka
connect is another powerful entity to

connect systems or a search cluster it could

be a database. To integrate all of them a

search cluster, SaaS product, systems we
have an entity called Kafka connect. It's an

ecosystem for open source even commercial

products.

We are using another component with
apache Kafka to achieve scalability and high

availability. It is depending on the

Zookeeper which will act as a managing

entity. Apache zookeeper is used to
coordinate functions and nodes served by

apache Kafka.

Apache Kafka is built on the publishing and

subscribe model. for processing logs we
have designed filters as per log type which

can process logs and send them back to

respective partitions. Each partition is
subscribed by one or more consumer groups

which will then consumed by the log

collector agent.

Shipping big data to storage is another

hurdle we used a fully scalable part here we
have many instances of logstash which will

forward processes log to storage. An

important part is any instance can fail at any
time to handle failure we are using a full

Kubernetes cluster with many instances of

logstash as a part of the consumer group of

a Kafka. In this subtopic, every component
is failure resilient and scalable. Kafka can

be controlled by apache zookeeper and

logstash instances by Kubernetes.

Monitoring Microservices in the Distributed Environment

65

Storage and Analysis

The next part of this architecture is the data

warehouse that is where data should be
stored. There are again multiple choices to

select the database or a system that can be

used to store data. We have done few tests
with few available options like influxdb,

arango db, Apache drill, and then selected

Open distro for Elasticsearch. Which is used

to store data in this architecture. There are
many reasons behind selecting that

database. The first reason is that it has

extremely powerful search capabilities than

other available choices.

There is one issue while using Elasticsearch

that is currently pop up. Elasticsearch

changed its license to SSPL from Apache

2.0 so it's no more a pure open-source tool
to use after its version change. As per the

problem statement of this paper, every

technology must come under the pure open-
source domain. The solution is Open distro

for Elasticsearch built by amazon. Amazon

is providing it under license Apache 2.0 so

we have used them in our architecture.

Open distro for Elasticsearch also has its

plugins which come under the same license

that is apache 2.0. Open distro for

Elasticsearch is going to provide its
upcoming versions under the same license

apache 2.0.

Open distro for Elasticsearch (ODFE) is an

open-source technology that is distributed
and highly scalable. It has powerful and

efficient searching capabilities. It is not like

a traditional database even people often

compare it with relational databases.

It can handle large volumes of data
efficiently which will make it more

powerful. It has full-text search capabilities.

Open distro for elastic search cannot only

stores log but also it can analyze them too.

We can query just like typical databases. We

can use SQL for it with open distro for

Elasticsearch and for normal Elasticsearch
OSS image we have DSL queries. Queries

that take 10 seconds to execute with others

take 10 milliseconds in executing them

against OPDF.

It stores data in partitions that are spread

across multiple nodes of a cluster. It

provides data replication via partitions we
call shards. Shards are available across

many nodes in Elasticsearch.

Fig. 5. ODFE highly available cluster

setup

Setting up a cluster is not difficult but it's

difficult to set up a highly available cluster

that is production-ready. ‘n’ node elastic
search cluster with minimum 3 master nodes

and minimum 3 data nodes can become a

highly available cluster. Why 3 because if

any master node fails still it can continue. If
even if any data node fails we still have data

due to the replication of partitions. Here is

an issue we must need to achieve a quorum
to proceed or to elect a new master. So we

can set configure a cluster to avoid split

brain issues by imposing a condition that it

should not work if a minimum of more than

half of nodes are available.

International Journal of Research and Analysis in Science and Engineering

66

As Elasticsearch and Kibana are products

from the same community license changes

applied on Kibana too. So again, the
solution for this problem is to use a forked

version from amazon. Kibana is a

visualization tool. Along with aws plugins,
it can become more than a visualization tool.

Like security plugin from open distro will

make Elasticsearch and Kibana both
powerful and secure. It also provides access

control and a role-based mechanism for

index. It has great monitoring capabilities

than the usual normal version of
Elasticsearch. It provides alerting

mechanism if we set a trigger.

We are using the machine learning

capabilities of ODFE to create an anomaly
detector. A machine-learning algorithm

“Robust Random Cut Forest Based

Anomaly Detection on Streams” [9] helps

us to find the anomaly. Kibana is used for
visualization and analysis of every activity

inside the container. We can have the kibana

server installed on any server that can
connect to ODFE cluster securely with a

node to node encryption policy.

Conclusion

This architecture will assure that this is the

best possible way to monitor the
microservices environment in the real-time

production environment. Which will use

less computational power than the existing
architecture available. This stable solution is

more reliable and highly scalable as per

need. Resulted architecture provides low

overhead on an important worker node in
the Kubernetes cluster. This proposed

architecture will work in the real-time

production environment for providing
effective cloud service. The proposed

architecture is completely based on open

source technologies that can handle a large
amount of data and allow the user to

securely monitor the application

References:

1. L.Chen, J. Liu, M. Xian and H. Wang,

"Docker Container Log Collection and
Analysis System Based on ELK," 2020

International Conference on Computer

Information and Big Data Applications

(CIBDA) 2020, pp. 317-320, doi:
10.1109/CIBDA50819.2020.00078

2. Barakat, Saman, Monitoring and

Analysis of Microservices
Performance.Journal of Computer

Science and Control Systems. (2017)

10. 19-22.

3. Xinming Lai1, HaitaoWang, Jing Zhao,

Fan Zhang, Chao Zhao and GangWu.

IOP Conference Series: jorurnal of
computer science Volume 688, Issue

3,2019

4. Y. Jiang, N. Zhang and Z. Ren,
"Research on Intelligent Monitoring

Scheme for Mi-croservice Application

Systems," 2020 International
Conference on Intelligent Trans-

portation, Big Data Smart City

(ICITBS), Vientiane, Laos, 2020, pp.

791-794, doi:
10.1109/ICITBS49701.2020.00173

5. V. Zamfir, M. Carabas, C. Carabas and

N. Tapus, "Systems Monitoring and Big
Data Analysis Using the Elasticsearch

System," 2019 22nd International

Conference on Control Systems and
Computer Science (CSCS), Bucharest,

Romania, 2019, pp. 188-193, doi:

10.1109/CSCS.2019.00039.

6. M. Mazzara, N. Dragoni, A.

Bucchiarone, A. Giaretta, S. T. Larsen

and S. Dustdar, "Microservices:

Migration of a Mission Critical
System,"(2018) in IEEE Transactions

on Services Computing, doi:

10.1109/TSC.2018.2889087.

7. A. Pătraşcu and V. Patriciu, "Logging

framework for cloud computing

forensic environments," 2014 10th
International Conference on

Monitoring Microservices in the Distributed Environment

67

Communications (COMM), Bucharest,

2014, pp. 1-4, doi:

10.1109/ICComm.2014.686666.

8. A. Noor et al., "A Framework for

Monitoring Microservice-Oriented

Cloud Applications in Heterogeneous
Virtualization Environments," 2019

IEEE 12th International Conference on

Cloud Computing (CLOUD), Milan,
Italy, 2019, pp. 156-163, doi:

10.1109/CLOUD.2019.00035.

9. Sudipto Guha, Nina Mishra, Gourav
Roy, Okke Schrijvers: Robust Random

Cut Forest Based Anomaly Detection

on Streams. ICML 2016: 2712-2721

10. Jay Kreps, Neha Narkhede, Jun Rao and

Linkedin Corp “Kafka: a distributed

messaging system for log processing.”

NetDB’ 11 2015.

