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ABSTRACT 

Non-Volatile Memory (NVM) technologies are widely used to implement embedded file 

systems; however, with latencies and write endurance closer to SRAM and DRAM than to 

Flash, they are positioned as potential replacements for volatile technologies. In many 
cases, pre-initialized data structures can be used to make the most efficient use of memory. 

This paper introduces two NVM technologies and discusses their applications as processor 

registers, caches, and main memory, as well as a possible design of an embedded system 

with non-volatile memory components. 
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Introduction: 

Non-Volatile Memory:  

Non-volatile memories retain their contents even when the power is turned off, making them 

ideal for storing data that must be retrieved after a system power-cycle. Nonvolatile memory 
is typically used to store processor boot-code, persistent application settings, and FPGA 

configuration data. Although non-volatile memory has the advantage of retaining data even 

when power is turned off, it is typically much slower to write to than volatile memory and 
frequently has more complex writing and erasing procedures. Non-volatile memory is also 

typically only guaranteed to be erasable a certain number of times before failing. 

Nonvolatile memories include all forms of flash, EPROM, and EEPROM. For non-volatile 

storage, most modern embedded systems employ some form of flash memory. 

It is a type of memory in which data or information is not lost even when the power is turned 

off. The most common type of non-volatile memory is ROM (Read Only Memory).  
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It is not as economical and slow in fetch/store as volatile memory, but it stores a larger 

volume of data. Non-volatile memory is used to store information that must be kept for an 

extended period of time. Non-volatile memory has a significant impact on the storage 

capacity of a system. [1] 

SDRAM: 

Another type of volatile memory is SDRAM. It is similar to SRAM in that it is dynamic 

and must be refreshed on a regular basis to maintain its content. SDRAM's dynamic memory 
cells are much smaller than SRAM's static memory cells. This size difference translates into 

extremely high-capacity and low-cost memory devices. SDRAM has other very specific 

interface requirements that, in addition to the refresh requirement, typically necessitate the 

use of special controller hardware. SDRAM divides its memory space into banks, rows, and 

columns, as opposed to SRAM, which has a fixed set of address lines.  

Switching between banks and rows incurs some overhead, so efficient use of SDRAM 

necessitates careful access ordering. SDRAM also multiplexes row and column addresses 

over the same address lines, reducing the number of pins required to implement a given size 
of SDRAM. Higher speed SDRAM variants such as DDR, DDR2, and DDR3 have strict 

signal integrity requirements that must be carefully considered during the PROCESS 

CONTROL BLOCK design. SDRAM devices are one of the most popular types of RAM 

devices because they are among the least expensive and have the highest capacity. SDRAM 
is used in the majority of modern embedded systems. The SDRAM controller is a critical 

component of an SDRAM interface. The SDRAM controller handles all address-

multiplexing, refresh, row and bank switching, and row and bank switching tasks, allowing 
the rest of the system to access SDRAM without understanding its internal architecture. [2-

3] 

 

Figure 1: SDRAM Memory Architecture 
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Dynamic RAM Overview: 

Because of the lower cost per bit, larger microcomputer systems use Dynamic RAM 

(DRAM) rather than Static RAM (SRAM). DRAMs necessitate more complex interface 

circuitry due to their multiplexed address bus and the need to refresh each memory cell on 

a regular basis. 

A typical DRAM memory is organised as a square array of memory cells with equal 

numbers of rows and columns. One bit is stored in each memory cell. The bits are addressed 

by selecting a row with half of the bits (the most significant half) and a column with the 
other half. Each DRAM memory cell is made up of only a capacitor and a MOSFET switch. 

As a result, a DRAM memory cell is much smaller than an SRAM cell, which requires at 

least two gates to implement a flip-flop. [4] 

 

Figure 2: DRAM Inside Structure 

The DRAM system will use an architecture similar to that of most previous SRAM systems. 

One significant distinction is the potential need to manage the refresh function. A second 

distinction arises from the difficulty of memory size versus IC package size. 

NVRAM:  

There is a lot of memory in a modern computer system. The majority of it is 

anachronistically referred to as random access memory (RAM). Because all memory 

nowadays is random access, the name makes little sense. RAM refers to volatile 
semiconductor memory that can be written to and read from indefinitely as long as power 

is applied. This was not always the case. "Core memory" was the most common form of 

program/data storage in the early days of computers. This was bulky and heavy (not to 
mention expensive!) by modern standards, but it had a useful feature: it was non-volatile. 

Power was required to read or write data, but not to keep it. Data would remain unchanged 

for indefinite periods of time if the core memory was turned off. Dropping or vibrating core 

memory could corrupt its contents, but this was rarely a cause for concern (except in 

earthquake zones) because computers were bulky and immobile. [5] 
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Although RAM is the primary form of working memory in modern computers and most 

embedded systems, having a quantity of non-volatile RAM (NVRAM) available can be 

useful. This could be implemented with flash memory or another non-volatile memory 
technology (like MRAM), or it could be regular RAM with a protected power supply (i.e., 

a battery). In an embedded system, NVRAM can be used for a variety of purposes, 

including: 

• Programme code and constant data are stored in RAM and are copied into RAM 
upon startup. Although NVRAM execution is generally an option, the speed (access 

time) of some NVRAM technologies makes it unappealing. 

• Preservation of device configuration parameters between power cycles. Many 
devices can be configured by the user; this information must be saved somewhere. 

• Long-term buffering of acquired data with immunity to power outages. A simple 

example is the storage of photos in a digital camera. 

NVRAM Initialization: 

When NVRAM is first powered on, it contains indeterminate data and must be initialised, 
just like regular RAM. The software must recognise that the NVRAM has been initialised 

and not overwrite the saved data on subsequent occasions. 

The simplest way to accomplish this is to use a signature, which is simply a quickly 

recognisable sequence of bytes that cannot occur randomly. Of course, this ideal is 

impossible to achieve because any sequence of bytes, no matter how long, could occur at 
random. It's just a matter of minimising that possibility while keeping the check quick and 

simple. If the signature is only four bytes long, it has a 4 billion-to-one chance of occurring 

at random. That is sufficient for almost any conceivable application. A 32-bit value can also 

be checked quickly. [6] 

NVRAM integrity: 

Of course, using a signature does not guarantee the data's integrity. It's a good idea to use a 

checksum or CRC for error checking, or even a mechanism for data self-correction. 

System start-up with NVRAM:  

When using NVRAM, the start-up logic must support both signature verification and data 

integrity checking. 

Non-Volatile Embedded System:  

The section that follows examines the processor, caches, and main memory to discuss how 

these components can be rethought using non-volatile memory (NVM) technologies. The 

positive effects that NVMs can have on an embedded system are investigated, as well as the 

challenges that come with less beneficial properties and how those can be compensated for. 
In addition, potential implementations are discussed. This section is only a summary of the 

research in this area and does not purport to be exhaustive.  [7] 
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1. Non-Volatile Processor (NVP) 

All memory components in the processor, from the register file and programme counter 

(PC) to the buffers, queues, and lists needed for pipelining, are typically implemented in 

volatile memory technologies. Designing a non-volatile processor (NVP) is a complex task, 
but using NVM offers the benefit of improved forward progress due to the availability of 

backups. This feature becomes even more important if the system is powered by a battery 

charged by energy harvesting. If a power outage occurs, a system with a volatile processor 

loses its state, as does all data not yet written to an NVM. 

2. Design: 

As previously stated, the implementation of backups is a critical component when designing 

an NVP. The location of the backup, the components to be backed up, as well as the timing 

and frequency of backup operations, must be determined. All components, including the 
register file, are non-volatile when using only NVMs, allowing them to retain their state 

during power outages. This design necessitates considerable effort to ensure that the system 

only moves from one valid state to another. Actual backups would be possible with the 

addition of a central NVM block. [8] 

Review of Literature: 

According to Ma et al. [8], processor components are classified as architecture state (register 

file, PC), microarchitecture state (pipeline latches, reorder buffer, and load/store queue), 

and performance-enhancing components (e.g., branch history table, branch target buffer). 
Different backup strategies are developed based on these three categories, with their 

effectiveness determined by the system's timing constraints. For example, including 

performance enhancers in the backup significantly improves forward progress because the 

entire pipeline state is saved and does not need to be recalculated. 

The timing of backups is just as important as deciding which components to keep. There 
are two approaches: backups are performed either on a regular or on-demand basis. Periodic 

backups, as proposed by Xie et al. [9], can occur at fixed intervals or at statically determined 

code lines. Their method employs static code analysis to select backup points that store 
consistent states. They identify load and store instructions to the same address as potential 

error locations, or rather the code in between those instructions. 

Ma et al. [8] propose back-up schemes that are triggered when the power supply falls below 

a certain threshold. The threshold is set so that the remaining energy barely exceeds the 

level required to complete the backup routine (On Demand All Back-Up). Alternatively, the 
remaining energy is sufficient to complete the current PC as well as the entire back-up 

routine (On Demand Selective Back-Up). 

Result and Discussion: 

A CPU cache is a cache used by a computer's central processing unit to reduce the average 

time to access memory. The cache is a smaller, faster memory that stores duplicates of data 

from frequently accessed main memory locations.  
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As long as the majority of memory accesses are to cached memory locations, the average 

latency of memory accesses will be closer to cache latency than to main memory latency. 

Data is transferred between memory and cache in fixed-size blocks known as cache lines. 

A cache entry is created when a cache line is copied from memory into the cache. The cache 
entry will contain both the copied data and the requested memory location (now known as 

a tag). When the processor needs to read or write a location in main memory, it first looks 

in the cache for a corresponding entry. The cache looks for the requested memory location's 
contents in any cache lines that may contain that address. A cache hit occurs when the 

processor discovers that the memory location is in the cache. A cache miss occurs if the 

processor does not find the memory location in the cache. In the event of: When a cache hit 
occurs, the processor reads or writes the data in the cache line immediately. In the event of 

a cache miss, the cache creates a new entry and copies data from main memory. The request 

is then fulfilled using the cache's contents. [10] 

 

Figure 3: Memory Cache 

The replacement policy determines where a copy of a specific main memory entry will go 

in the cache. The cache is said to be fully associative if the replacement policy is free to 

choose any entry in the cache to hold the copy.  

The cache is direct mapped if each entry in main memory can only go in one place in the 

cache. Many caches implement an N-way set associative compromise in which each entry 

in main memory can go to any one of N places in the cache. [11] 

One advantage of this scheme is that the cache tags do not have to include the portion of the 

main memory address implied by the cache memory's index. Because cache tags have fewer 
bits, they take up less space on the microprocessor chip and can be read and compared more 

quickly. LRU is also particularly simple because only one bit needs to be stored for each 

pair. 
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Figure 4: Associative cache 

The most common CPU operation that takes more than a single cycle is cache reads. The 

latency of a level-1 data cache hit has a high impact on programme execution time.  

A significant amount of design effort, as well as power and silicon area, is expended to 

make caches as fast as possible. [12] 

Dynamic Memory Allocation: 

The act of managing computer memory is known as memory management. Memory 
management must provide methods for dynamically allocating portions of memory to 

programmes at their request and freeing it for reuse when no longer required. This is critical 

to the computer system's operation.  

Several methods for improving memory management effectiveness have been developed. 

Virtual memory systems decouple the memory addresses used by a process from the actual 
physical addresses, allowing process separation and increasing the effectively available 

amount of RAM through paging or swapping to secondary storage. The virtual memory 

manager's performance can have a significant impact on overall system performance. [13-

14] 

Conclusion: 

This paper discussed the current state of research into the use of byte-addressable non-

volatile memory technologies and their potential to replace volatile SRAM and DRAM. 

Using NVRAM in an embedded design is simple, but its functionality must be carefully 
accommodated, as explained here. The approach of using a global signature and error check 

is appropriate for a wide range of applications. A separate check on each block of data may 

be more efficient for very large databases. 
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