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ABSTRACT

In this paper, we prove some inequalities for eigenvalues of polynomial operator of elliptic
operator in divergence form on a metric measure space isometrically immersed into an
Euclidean space. As applications of the result, we also give some corresponding results on
complete minimal submanifolds in Euclidean spaces and unit ball.
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1. Introduction:

The problem of eigenvalue estimation of differential operators is an important research
direction in differential geometry. In recent years, the metric measure space has received
more and more attention, and the study of eigenvalues of elliptic operators on it has become
a frontier research problem internationally.

Let (M,g,e "dv) be a smooth metric measure space and Q be a bounded connected
domain with smooth boundary 62, where f is a smooth real-valued function, {,) is the

Riemannian metric and dv is the Riemannian volume element on the Riemannian manifold
(M, {,)) . we consider the following eigenvalue problem:

L°u+ pLu+qu=A4pu, inQ,
ou (1.1)

u |aQ:__. |aQ: 0,

ov
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where pis a constant on (), gand pare two positive continuous functions on €, v

denotes the outward unit normal to the boundary 0C2, A is a symmetric positive definite
(1,1)-tensor and the elliptic operator in divergences form L as follows:

L =div, (AV) =div(AV) —(Vf, AV ). (1.2)

When M is compact and A is divergence-free( divA =0), hence the operator L is a first-
order perturbation of the Cheng-Yau™ operator div(AV). If the smooth function f is

constant, then the elliptic operator L is the Cheng-Yau operator. The operator div(AV)
has been studied extensively in recent years. More results, we refer to [2-5].

Let (e,e,,...,&,) be a local orthonormal geodesic frame of TM , we can define a
generalized mean curvature vector associated by the following formula:

1 Ll
HA:HED(A(ei)'ei)'_ ntl’(D A), (1.3)

where [] be the second fundamental form on a smooth metric measure space (M, g,e‘f dv)

isometrically immersed in Euclidean Space [ ™. More details and applications of H, can

be found in [6] and [7]. On this basis, Gomes!® and others®*!I have obtained some universal
inequalities for eigenvalue of the operator L on different spaces.

The problem (1.1) has a real and discrete spectrum O0< A4 <A, <A, <---— 400, where

each eigenvalue is repeated according to its multiplicity. In this paper, we can obtain some
universal inequalities for the lower order eigenvalues of the elliptic operator L on smooth
metric measure space.

Theorem 1.1 Let Q) be a bounded domain in an n-dimensional complete smooth metric
measure space (M, g,e "dv). Denote by A, the i-th eigenvalue of problem (1.1). Assume

that gl <A<el, p<p<p,, q=0q,, where ¢,, p,, p, and (, are positive constants.
Set H, =sup|H,|, f, =sup|Vf|, A, =sup|tr(VA)|, then
Q Q Q

n

S (a4 p—z[(ﬂwez )+ PHZ 422 (A 4y, E? +za]

i=1

&pf (1.4)

1 2
{(Ab +6,1,)2 +N?H2 + 242 (A, +5, T, ) E? +2E, + 2nE, -2 22 pna‘l] ,

P
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where E, :—p+\/p2—4pl %—21) :
2

1

Remark 1.1 Taking p=0,q=0, p=1 in Theorem 1.1, then p, = p, =1, E, =242. So
(1.4) becomes the inequality (1.10) of Theorem 1.1 in Article [10].

Corollary 1.1 Set W, = max {Sup’Wek k= n+1,...,m}. Under the same assumptions
o)

as Theorem 1.1, we have

i(gm _,11)%” p_g((pb +6,1,)2 +(m=n)’ W2 +22(A +¢, fO)Elg + 2Elj

2
&0

1
2

1 2
><[(AD +6,f,)2 +(m=n)’ W2+ 2V2 (A +5,) ) E2 +(2+ 2n)E, 224 pnglJ :
2

(1.5)

As we all know, when M is an n -dimensional Euclidean space, H; =0. Thus we obtain
the following corollary from Theorem 1.1.

Corollary 1.2 Let QQbe a connected bounded domain in an n-dimensional complete
minimal submanifold in a Euclidean space. Denote by A, the i-th eigenvalue of problem
(1.1). Then we have

1
n 1 2

Z(ﬂ"ﬂ_ﬂl)g” /023 [(A()+52 fo)2+2\/§(pb +é, fO)E§+2Eij

2
&P

(1.6)

1 2
{(AD +&, 1) + 22 (A +é,f, ) E? +2E, +2nE, -2 22 pnglj :

P

Moreover, when M is an n-dimensional unit sphere, H, <&, . Hence we have the
following result:

Corollary 1.3 Let Q2 be a connected bounded domain in an n-dimensional unit sphere
S"(1) . Denote by A, the i-th eigenvalue of problem (1.1). Then we have
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1
2

Z(jm_ﬂl);” '023 [(Ao +e,T,)? +n%el +242 (A +e, fO)El% +2Elj

31/315 (1.7)

1 2
><[(AD +&,T,)? +n2e2 + 242 (A + &, T, ) E2 +2E,+2nE,— 222 pnglJ :

2
2. Proofs of the main results:

Before giving the result, we give some necessary lemmas that will play an important role
in the proof of Theorem 1.1.

Lemma 2.1 Let u; be the orthonormal eigenfunction corresponding to the i -th eigenvalue
J, of problem (1.1). For any function g, € C*(Q) , if it satisfies IQ g,u, =0, then we have
jQulYi =0 2.1)

and

Lg, )
J.Q QuY; = J-QZ(<Vgi’ Avu1>+UITglj —2ulu, <v9i’Av9i>_ pu12 <VgivAVgi>,
(2.2)

where
Y, =2(Vg;, AV(Lu,))+2L (Vg,, AVU, ) +L (uLg,) +LulL g, +2p(Vg,, AVu,)+ pu,Lg,.
Proof Using the divergence theorem, we can get the following equations:

[_ul(vg, AVu) + [ u(Vg, AV(Lu,))
= [ Lu(vg, AVu) — [ Lu(vg, AVu)—[ ululg, (2.3)
= —IQ ulLulg,

and
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IQ u’Lg, +2jgul<Vgi,AVul>
= _[Q(giulL u, +g,u,Lu, +29,(Vu,, Avu,)) —IQ (29,u,Lu, +29,(Vu, AVu)) (2.4)
=0.

Since the operator L is self-adjoint, then
IQU1LU1Lgi :.[Qull— (ulLg;). (2.5)
From (2.3-2.5), we get

_[QYiul = J'Q[ungiLu1 +uLg;Lu, +2Lu (Vg,, AVU, ) - 2L u, (Vg,, AVU, )
(2.6)
—2uLu,Lg; + pu/Lg; +2pu, (Vy;, AVu1>] =0.

This completes the proof of (2.1).
Moreover, we have

2[ gu (Vu, AV(Lg))= [ (2uLg, (Vu, AVg,)+uf (Lg, ) - guiL’g, )
2.7)

IQ gu,L (Vg,, AVu,) = jQLgiul(Vgi AV, ) +2(Vg,, AVY, ) + gLy, (Vg,, AVu, )
2.8)

and

jﬂ 0., (Vg,, AV (Lu,)) = —J.QulLul (Vg;, AVg,)+g;Lu, (Vg;, AVu, )+ guLgLu,.
2.9)
Substituting (2.7-2.9) into the following equation, we have
IQ gl Y;
= [ 20, (Vg,, AV(LU,)) + 2guL (Vg,, AVU, )+ gL (UL g,)
+0uLulg +2pgu, <v9i , AVU1> + pgurLg,
ulg Y
:IQZ(ng, AVul>+1Tg'J —2u,Lu, (Vg;, AVg, ) — pu’ (Vg;, AVg; ).

(2.10)
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The proof of Lemma 2.1 is complete.

Lemma 2.2 Let u; be the orthonormal eigenfunction corresponding to the i-th eigenvalue

A, of problem (1.1). For any functiong; € ok (ﬁ) , if it satisfies IQ g,u, =0, then we have

(=) U2 (V0 AV, ) < 5[ %, += | 1[%%%%&) @11
Q Q Qp

where ¢ is any positive constant and

ulg,
2

2
¥, = 2((Vgi,AVu1)+ ] —2u,Lu, (Vg;, AVg, ) - pu; (Vg;, AVg; ).

Proof Consider the test functions ¢ = g,u, —a,u, , where g, :jgpgiuf. It is easy to

check that IQ po.U, =0. Moreover, we have

o9, -
¢’i|aQ=E|aQ=0 and _[ngoiuj+l:0, v0< j<i.

Therefore, using the Rayleigh-Ritz inequality, we get

2’1+1J-Qp¢)i2 < J.Q(Di |:L2¢)i +pL o, +Q¢i] = Lﬂ’i [Lz (giul)+ pL (giu1)+q(giu1):|'
(2.12)

It is easy to obtain that
L%(g,u,) = g;,L°u, +2(Vg,, AV(LU,))+ 2L (Vg;, AVu, )+ L (uLg)+Lulg,. (213)
Substituting (2.13) into (2.12), we have
2
(ﬂ’H-l_ﬂl)JQp(oi < ngiYiul_aijQYiul' (2.14)
Substituting the equation (2.1) and (2.2) in Lemma 2.1 into (2.14), we get

(ha=4)[ Pl <] W, (2.15)
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ulog,
Notice that _[Q U, ((Vgi , AVul> + nglj = 0. Hence, from the divergence Theorem, we

have

_ZJQ% ((Vgi, AVUJ-&—%) = jg[giqugi +0; <v9i ) AVU12>J = J‘Qulz <Vgi , Av9i>'
(2.16)

1

Multiplying both sides of (2.16) by (4., —4,)? , we deduce

(m—@)%ui (vg,. AVg,))

2
, 1 1 ulg,
S5(21+1_/11)I9p¢i +EJQ|:ﬁ(<Vgi’AVU1>+ 12 ﬂ (2.17)
1,1 uLg; ’
Séjg‘l’i +5IQ;(<Vgi,AVu1>+1T] :
The proof of Lemma 2.2 is completed.

Now we give the proof of Theorems 1.1.

proof of Theorems 1.1 Let y =(Y,,Y,,..., Y,,) be the position vector of the immersion of

M on[1™. Taking g, =Y; in lemma 2.2, and summing over ifrom 1 tom, and set

(= [(Vyi, AVU, )+ ul;yi

J,We get

i(ﬂw.ﬂ—ﬂq)%(jﬂuf (VY AVY,))< i%j}f?

i=L i=1 P (2.18)

According the Schwarz inequality, there is

[Luluy,, (jguf [ (Lu) ); < [% jgulLZuljz. (2.19)
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Hence

A ,ol(j uLu) +pI u,Lu, + % (2.20)

P2
Solving this quadratic equation, we get

IulL u, < 2E—1 (2.21)

Pr

whereE1=—p+\/p ~ap (- 2).
yoR

From the article by Gomes and Miranda’, we can give some results as follows

Zml: Vy,, AVy, ) = tr(A), (2.22)
izml:\(Vyi,AVul)f —|Avy, [, (2.23)
.ml Ly;) —nH 2+ (tr(VA), tr(VA) - 2AVf>+|AVf| (2.24)
and
izml:L Y.(Vy,, AVU,) = (tr(VA), AVu,) — (A(VT), AVu,). (2.25)

After computation, some inequalities can be obtained as follows:

m 2
HL) s 2 aA T el T H, 2.26
;IQU(Y) p1+pgAb 1 +p| i (2.26)

N A+e,f, E >
;IgulLyi (Vyi,AVul>,, p ( 5 )2, (2.27)
ivai AVL) =] | A(VY,)[ = [ [(A(V), A(Vy,))|< ‘ZZ—E, (2.28)
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—ZI uLu, (Vy,, AVy, )= _[u Lu, tr(A),, ne,E, (2.29)
2p,
and
—pz_[ uf (Vy,, AVy, )= J'u tr(A)<—£ngl. (2.30)

2

In addition, after a simple computation we can obtain

i(ﬂm —ﬂl)%fuf (Vy,, AVy,)

g O 1 2
> 2L (= 4)2 VY|
Pz =
& n
zp—.l(ﬂ,, IVy.| +( ﬂZl\Vh ]
, = n+
(2.31)
n 1 L X
:% (ﬂ,,+l—ﬂl)2|wi|2+(ﬂf.+l—ﬂl)2(n—ZIWiIZj
, S i=1

23 (s~ 2 e V[ + 2 (A= 22 (11

=83 (A )

P2 iz

Substituting (2.26-2.31) into (2.18), we get

n 1
N (Aa—4)2 5[}(2@ 2~ pnglﬂ
P> i=1 P P>

{ L (5+LJ[AO +26,A fy +e2f2+NHZ + 242 (A + &, f )E;+2Eiﬂ.
2p, opy

(2.32)

Taking

N

1
(A +ng0)2+nH02+2\/§(AO+ngo)Ef+2E

6= 1
pl( A +5,1,) +nHZ + 242 (A +5, 1, ) E2 +(2+2n)E, - 222 png ]
o)
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in (2.32), we can get (1.4). The proof of Theorem 1.1 is completed.
Proof of Corollary 1.1 LetWei be the Weingarten operator of the immersion with respect

toe,, set W, = max {sgp ’\Nek

'k :n+1,...,m}.Then we have

Itr(JoA)Il

-|2r(Ae)e)

m

=1 ( ikl (W, e, Ae >}k

k=n+1

< Zm: <Wek : A>‘2 Zm: e < (m—n)*W2eZ.

k=n+1 k=n+1

2 2

izkzl:kgl(D(Aei €):8 )8
i (W, , Ak,

2
k=n+1

2

This finished the proof of Corollary 1.1.
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