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ABSTRACT  

In this paper, we prove some inequalities for eigenvalues of polynomial operator of elliptic 

operator in divergence form on a metric measure space isometrically immersed into an 
Euclidean space. As applications of the result, we also give some corresponding results on 

complete minimal submanifolds in Euclidean spaces and unit ball. 
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1. Introduction: 

The problem of eigenvalue estimation of differential operators is an important research 

direction in differential geometry. In recent years, the metric measure space has received 

more and more attention, and the study of eigenvalues of elliptic operators on it has become 

a frontier research problem internationally. 

Let ( , , )fM g e dv−
 be a smooth metric measure space and   be a bounded connected 

domain with smooth boundary ,  where f  is a smooth real-valued function,  ,   is the 

Riemannian metric and d  is the Riemannian volume element on the Riemannian manifold

( , , )M   . we consider the following eigenvalue problem: 

2 ,  in ,

| | 0,

u p u qu u

u
u
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= =
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                                 (1.1) 
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where p is a constant on  , q and  are two positive continuous functions on  ,   

denotes the outward unit normal to the boundary  , A  is a symmetric positive definite 

(1,1)-tensor and the elliptic operator in divergences form L  as follows: 

div ( ) div( ) , .f A A f A=  =  −  L                              (1.2) 

When M is compact and A  is divergence-free( div 0A= ), hence the operator L  is a first-

order perturbation of the Cheng-Yau[1] operator div( )A . If the smooth function f  is 

constant, then the elliptic operator L  is the Cheng-Yau operator. The operator div( )A  

has been studied extensively in recent years. More results, we refer to [2–5]. 

Let 
1 2( , , , )me e e  be a local orthonormal geodesic frame of TM , we can define a 

generalized mean curvature vector associated by the following formula: 

   
1

1 1
( ( ), ) : tr( ),

n

A i i

i

A e e A
n n

H
=

= =                                   (1.3) 

where  be the second fundamental form on a smooth metric measure space ( , , )fM g e dv−
 

isometrically immersed in Euclidean Space 
m

. More details and applications of 
AH  can 

be found in [6] and [7]. On this basis, Gomes[8] and others[9-11] have obtained some universal 

inequalities for eigenvalue of the operator L  on different spaces.   

The problem (1.1) has a real and discrete spectrum 
1 2 30       →+ , where 

each eigenvalue is repeated according to its multiplicity. In this paper, we can obtain some 

universal inequalities for the lower order eigenvalues of the elliptic operator L  on smooth 

metric measure space. 

Theorem 1.1 Let   be a bounded domain in an n -dimensional complete smooth metric 

measure space ( , , )fM g e dv−
. Denote by i  the i -th eigenvalue of problem (1.1). Assume 

that 
1 2I A I   , 1 2    , 0q q , where 2 , 1 ,

2  and 0q  are positive constants. 

Set 0 supH


= AH , 0 supf f


=  , 0 sup tr( )A A


=  ,  then 
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( )
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n

i

i

i

A f n H A f E E
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 „

      (1.4) 
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where 
2 0

1 1 1

2

4 ( )
q

E p p  


= − + − − . 

Remark 1.1 Taking 0, 0, 1p q = = =  in Theorem 1.1, then 

1

2
1 2 1, 2i iE  = = = . So 

(1.4) becomes the inequality (1.10) of Theorem 1.1 in Article [10]. 

Corollary 1.1 Set  0 max sup : 1, ,
keW W k n m



= = +  . Under the same assumptions 

as Theorem 1.1, we have 

( ) ( ) ( )

( ) ( )

1
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1 1 0 2 0 2 0 0 2 0 1 13

1 2
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1
1 2

22 2 2 12
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n

i

i

A f m n W A f E E

A f m n W A f E n E pn
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 + + − + + + + − 
 

 „

   

(1.5) 

As we all know, when M is an n -dimensional Euclidean space, 
0 0H = . Thus we obtain 

the following corollary from Theorem 1.1. 

Corollary 1.2 Let  be a connected bounded domain in an n -dimensional complete 

minimal submanifold in a Euclidean space. Denote by i  the i -th eigenvalue of problem 

(1.1). Then we have 

( ) ( )

( )

1
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22 22
1 1 0 2 0 0 2 0 13
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1 1

1
1 2

2 12
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2
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+

=

 
− + + + + 

 

 
 + + + + + − 
 

 „

           (1.6) 

Moreover, when M is an n -dimensional unit sphere, 
0 2H  . Hence we have the 

following result: 

Corollary 1.3 Let  be a connected bounded domain in an n -dimensional unit sphere

(1)nS . Denote by i  the i -th eigenvalue of problem (1.1). Then we have 
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( ) ( )

( )
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2
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A f n A f E E nE pn


    

 


   



+
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− + + + + + 

 

 
 + + + + + + − 
 

 „

      (1.7) 

2. Proofs of the main results: 

Before giving the result, we give some necessary lemmas that will play an important role 

in the proof of Theorem 1.1. 

Lemma 2.1  Let iu  be the orthonormal eigenfunction corresponding to the i -th eigenvalue 

i  of problem (1.1). For any function
2 ( )ig C  , if it satisfies 1 0ig u


= , then we have 

1 0iu


 =                                                       (2.1) 

and 

2

21
1 1 1 1 12 , 2 , , ,

2

i
i i i i i i i

u g
g u g A u u u g A g pu g A g

 

 
 =   + −   −   

 
 

L
L   

(2.2) 

where 

1 1 1 1 1 1 .2 , ( ) 2 , ( ) 2 ,i i i i i i ig A u g A u u g u g p g A u pu g =   +   + + +   +L L L L L L L  

Proof  Using the divergence theorem, we can get the following equations: 

1 1 1 1

1 1 1 1 1 1

1 1

, , ( )

, ,

i i

i i i

i

u g A u u g A u

u g A u u g A u u u g

u u g

 

  



   +   

=    −    −

= −

 

  



L L

L L L L

L L

               (2.3) 

and 
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2

1 1 1

1 1 1 1 1 1 1 1 1 1

2 ,

( 2 , ) (2 2 , )

0.

i i

i i i i i

u g u g A u

g u u g u u g u A u g u u g u A u

 

 

+   

= + +    − +   

=

 

 

L

L L L      (2.4) 

Since the operator L is self-adjoint, then 

1 1 1 1( ).i iu u g u u g
 

= L L L L                                         (2.5) 

From (2.3-2.5), we get 

1 1 1 1 1 1 1 1 1

2

1 1 1 1 1

2 , 2 ,

2 2 , 0.

[

]

i i i i i

i i i

u u g u u g u u g A u u g A u

u u g pu g pu g A u

 
 = + +   −  

− + +   =

  L L L L L L

L L L
    (2.6) 

This completes the proof of (2.1).  

Moreover, we have 

( )( )22 2 2

1 1 1 1 1 12 , ( ) 2 , ,i i i i i i ig u u A g u g u A g u g g u g
 

  =   + − L L L L         

(2.7) 

2

1 1 1 1 1 1 1, , 2 , ,i i i i i i ig u g A u g u g A u g A u g u g A u
 

  =   +   +   L L L   

(2.8) 

and 

( )1 1 1 1 1 1 1 1, , , .i i i i i i i ig u g A u u u g A g g u g A u g u g u
 

  = −   +   + L L L L L  

(2.9) 

Substituting (2.7-2.9) into the following equation, we have 

       

1

1 1 1 1 1 1

2

1 1 1 1 1

2

21
1 1 1 1

2 , ( ) 2 , ( )

2 ,

2 , 2 , , .
2

i i

i i i i i i

i i i i i i

i
i i i i i

g u

g u g A u g u g A u g u u g

g u u g pg u g A u pg u g

u g
g A u u u g A g pu g A g









=   +   +

+ +   +
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L L L

L
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(2.10) 



Inequalities for Eigenvalues of Polynomial Operator of Elliptic Operator… 

43 

 

The proof of Lemma 2.1 is complete. 

Lemma 2.2 Let iu  be the orthonormal eigenfunction corresponding to the 𝑖-th eigenvalue 

i of problem (1.1). For any function ( )2

ig C  , if it satisfies 1 0ig u


= , then we have 

( ) ( )
2

1
2 12

1 1 1 1

1 1
, , ,

2

i
i i i i i

u g
u g A g g A u  

 
+

  

 
−     + +    

 
  

L
    (2.11) 

where  is any positive constant and 

2

21
1 1 1 12 , 2 , , .

2

i
i i i i i i

u g
g A u u u g A g pu g A g

 
 =   + −   −   

 

L
L  

Proof  Consider the test functions 
1 1i i ig u a u = − , where 

2

1 .i ia g u


=   It is easy to 

check that 1 0iu


= . Moreover, we have 

| | 0 and 1 0, 0 .i
i i ju j i


 


 




= = + =   
   

Therefore, using the Rayleigh-Ritz inequality, we get 

( ) ( ) ( )2 2 2

1 1 1 1 .i i i i i i i i i ip q g u p g u q g u      +
  

    + + = + +     L L L L    

(2.12) 

It is easy to obtain that 

2 2

1 1 1 1 1 12 , ( ) 2 , ( ) .( )i i i i i ig u g u g A u g A u u g u g= +   +   + +L L L L L L L L     (2.13) 

Substituting (2.13) into (2.12), we have 

2

1 1 1 1( ) .i i i i i ig u a u  +
  

−   −                                 (2.14) 

Substituting the equation (2.1) and (2.2) in Lemma 2.1 into (2.14), we get 

( ) 2

1 .k i i i  +
 

−                                              (2.15) 
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Notice that 1
1 1, 0.

2

i
i

u g
u g A u



 
  + = 

 


L
 Hence, from the divergence Theorem, we 

have 

2 2 21
1 1 1 12 , , , .

2

i
i i i i i i i i

u g
g A u g u g g g A u u g A g

  

   −   + = +   =      
  

L
L  

(2.16) 

Multiplying both sides of (2.16) by ( )
1

2
1 1i + − , we deduce 

( ) ( )

( )

1
2

2
1 1 1

2

2 1
1 1

2

1
1

,
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,

2
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, .

2

i i i

i
i i i i

i
i i

u g A g

u g
g A u

u g
g A u

 

   
 


 

+


+
 

 

−  

  
 − +   +  

   

 
  +   + 

 



 

 

L

L

            (2.17) 

The proof of Lemma 2.2 is completed. 

Now we give the proof of Theorems 1.1. 

proof of Theorems 1.1  Let 
1 2( , , , )my y y y=   be the position vector of the immersion of

M  on
m

. Taking i ig y=  in lemma 2.2, and summing over i from 1 to m , and set

1
1,

2

i
i i

u y
y A u

 
=   + 
 

L
, we get 

( ) ( )

( )

1
2 2

2
1 1 1

1 1

2 2

1 1 1

1

1 1
,

2 2 , , .

m m

i i i i

i i

m

i i i i i

i

u y A y

u u y A y pu y A y

 
 



+
 

= =


=

−   

 + −   −   

  

 L

                  (2.18) 

According the Schwarz inequality, there is 

( )( )
1

1
2

22 22

1 1 1 1 1 1

1

1
. u u u u u u

   

 
  
 

   „L L L                    (2.19) 
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Hence 

( )
2

0
1 1 1 1 1 1

2

.
q

u u p u u 
 

+ + … L L                             (2.20) 

Solving this quadratic equation, we get 

1
1 1

1

,
2

E
u u


 L                                                 (2.21) 

where 
2 0

1 1 1

2

4 ( ).
q

E p p  


= − + − −  

From the article by Gomes and Miranda[8], we can give some results as follows 

( )
1

, tr( ),
m

i i

i

y A y A
=

  =                                           (2.22) 

2 2

1 1

1

, ,
m

i

i

y A u A u
=

  =                                        (2.23) 

( )
22 2 2

1

tr( ), tr( ) 2
m

i

i

y n A A A f A f
=

= +   −  +  AHL                    (2.24) 

and 

1 1 1

1

, tr( ), ( ), .
m

i i

i

y y A u A A u A f A u
=

   =     −    L                   (2.25) 

After computation, some inequalities can be obtained as follows: 

( )
2 2

222 2 20
1 2 0 0 2 0 0

1 1 1 1 1

2 1
,

m

i

i

A n
u y A f f H 

   
=

 + + + L                  (2.26) 

1

0 2 0 2 1 2
1 1

1 1

, ( ) ,
2

m

i i

i

A f E
u y y A u

 


=

+
  „L                           (2.27) 

( ) ( ) ( )
22 2 1

1 1 1 1

1 1

, , ,
2

m

i

i

E
y A u A u A u A u



  
=

  =  =             (2.28) 
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2 1
1 1 1 1

1 1

, tr( )
2

m

i i

i

n E
u u y A y u u A




=

−   = −  „L L                        (2.29) 

and 

2 2

1 1 1

1 2

, tr( ) .
m

i i

i

p
p u y A y p u A n


=

−   = −  −                        (2.30) 

In addition, after a simple computation we can obtain  

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )

1
2
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1 1 1

1

1
21 2

1 1
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1 1 221 2 2
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i

i

u y A y
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= =
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n



               (2.31) 

Substituting (2.26-2.31) into (2.18), we get 

( )

( )

1
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1 1 1

12 1 2

1
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1 1

1
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2
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(2.32) 

Taking 

( ) ( )
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in (2.32), we can get (1.4). The proof of Theorem 1.1 is completed.  

Proof of Corollary 1.1  Let
ieW be the Weingarten operator of the immersion with respect 

to
ie , set  0 max sup : 1, , .

keW W k n m


= = +  Then we have 

( ) ( )

2

2 2

1 1 1

2 2

1 1 1

2 2 2 2 2

0 2

1 1

tr( )

( ), , ,

, ,

, ( ) .

k k

k

k k m

i i i i k k
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m k m

e i i k e k
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m m
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k n k n

A

A e e Ae e e e

W e Ae e W A e

W A e m n W 

= = = +

= + = = +

= + = +

= =

 
= = 

 

  −

  

  

 

‖ ‖

 

This finished the proof of Corollary 1.1. 
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