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ABSTRACT  

In this work we consider the boundary value problems for Sturm-Liouville operators with a 

constant delay 
2

,
5 2

 


 
 
 

 under eigenparameter boundary condition. Under some 

assumptions, the uniqueness of the inverse specteal problems is proved, where the potential, 
parameters in boundary conditions and the delay are uniquely determined by two spectra 

of the different boundary conditions. 
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1. Introduction: 

In this paper we consider the Sturm-Liouville boundary value problems ( )1,2jL j =  : 

 ( ) ( ) ( ) ( ) ( ), 0,y x q x y x y x x  − + −  =  （1.1） 

with boundary conditions 

 ( )0 0,y =  （1.2） 

 ( ) ( ) ( ) 0,jy H y   = +  （1.3） 
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where ( ) ,j j jH a b  = +  is the spectral parameter, 
2

,
5 2

 


 
 
 

, the complex-valued 

potential ( )q x  is continuous in   ( )0, , 0q x =  for ( )0,x  . Moreover, 

1 2 1 20,a a b b   and ( ) ( ) ( )2 2

2 1: 0H m H m H m= −  . 

Recently, differential operators with constant delays have attracted more and more attention 
of researchers because they are widely used in engineering and natural sciences (e.g., see 

the monographs [13, 18] and the references therein). Inverse spectral problems of the 

differential operators consist in recovering operators from the given spectral characteristics. 
The research contents involve the existence, uniqueness and reconstruction of Sturm-

Liouville operators. 

Comparing with the inverse spectral theroy of classical differential operators (see [12] and 

the references therein), it is more difficult to study the inverse problems of differential 

operators with constant delays. This is because the main methods of the inverse problems 
theory are not applicable for them. Therefore, there are only isolated results in this direction 

and do not form a complete picture. For example, in [1-9,11,20,23-24] they provided a few 

results of the inverse problems of Sturm-Liouville operators with a constant delay on a finite 

interval. 

In addition, as for the above papers (see [1-9, 11, 20, 23-24]), we note that the characteristic 

functions depend linearly on the potential in the case of large delay when 
2


  , i.e., the 

inverse problem becomes linear (see [3.23]). For 
2


  , this nonlinear case is essentially 

more difficult for investigating and constructing the solution of the inverse problems. The 

characteristic functions depend nonlinearly on the potential, i.e., the inverse problem 

becomes nonlinear (see [4,20]). 

In the papers [10,14,16-17,19], authors studied the inverse problems for Sturm-Liouville 

operators with eigenparameter boundary conditions. Moreover, we also note that there are 

some researches on the operators with one constant delay under eigenparameter boundary 

conditions (see [15,21]). In [21], authors studied two boundary value problems (1.4), (1.5), 

(1.6) and (1.4), (1.5), (1.7) for 
2

,
5


 

 
 
 

 : 

 ( ) ( ) ( ) ( ) ( ), 0,y x q x y x y x x  − + −  =  (1.4) 

 ( )0 0,y =  (1.5) 

 ( ) 0,y  =  (1.6) 
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( ) ( ) ( ) 0.y P y   = +  (1.7) 

Function ( )P   is normalized polynomial with degree ,s sN , and complex coefficients. 

The authors proved uniqueness and gave procedure for constructing potential. In the first 

case, for ,
2


 

 
 
 

, they showed that Fourier coefficients of a potential are uniquely 

determined by two spectra. In the second case for 
2

,
5 2

 


 
 
 

, they constructed integral 

equation about potential and they proved that this integral equation has a unique solution. 

Also, they showed that other parameters are uniquely determined by two spectra. 

In this paper we consider the inverse problems of Sturm-Liouville operators for 

2
,

5 2

 


 
 
 

 under Dirichlet/linear and Dirichlet/linear boundary conditions. In the case 

of 
2


  , it has been studied in [22], where we proved uniqueness and gave procedure for 

constructing potential under the conditions  − Q . However, this case may be not true 

as soon as 
2

5


  . It needs to be further studied separately. 

Moreover, we suppose that 
1b , 2b , integral ( )1 0I q t dt




=   and ( )2

2

t

I q t
 

 

−

=    

( )q s dsdt  are known and  − Q . We will prove that the ( )1,2jH j =  and the 

potential ( )q x  are uniquely determined from the spectra of ( ), 1, 2jL j = . To be more 

precise, let 
( ) 

0

j

n
n




 be the eigenvalues of ( )1,2jL j = . The inverse problems are to 

determine potential ( ) , jq x H  and   from 
( )  ( )

0
1,2

j

n
n

j


= . 

This paper is organized as follows. In Section 2 we study the spectra of the boundary value 

problems (1.1) -(1․3) and introduce transformation of characteristic functions, which is 
needed for constructing the integral equation with the potential. In Section 3 we consider 

the inverse spectral problems of recovering the potential ( )q x  and other parameters, and 

prove that the integral equation has unique solution. 

2. Properties of Spectral Characteristics: 

Let 
2 , s it  = = +  and the function ( ),y x   be the solution of the equation (1.1) under 

initial conditions ( ) ( )0 0, 0 1y y= = , then ( ),y x   is the unique solution of the integral 

equation 
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( )
( ) ( ) ( )( )

( )
sinsin

, , .
x q t x tx

y x y t dt



  

 

−
= + −  (2.1) 

For  )0,x  , the solution of (2.1) is 

( )
( ) ( ) ( )( )

( )
( )sinsin sin

, , .
x q t x tx x

y x y t dt


 
  

  

−
= + − =  

For ( , 2x   , the solution of (2.1) is 

( )
( )

( ) ( )( ) ( )( )2

sin 1
, sin sin .

xx
y x q t x t t dt




   

 
= + − −  

For  2 ,x    the solution is 

( )
( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

2

3 2

sin 1
, sin sin

1
sin sin sin .

x

x t

x
y x q t x t t dt

q t q s x t t s s dsdt



 




   

 

    


−

= + − − +

− − − −



 

 (2.2) 

Moreover, we have 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )2 2

1
, cos cos sin

1
cos sin sin .

x

x t

y x x q t x t t dt

q t q s x t t s s dsdt









    


    


−

= + − − +

− − − −

 

 

 (2.3) 

Let 

 ( ) ( ) ( ) ( )Δ , , , 1, 2j jy H y j      == + . (2.4) 

Using (2.2) and (2.3), we have 
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( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

( )
( ) ( )( ) ( )( )

( )
( ) ( ) ( )( ) ( )( ) ( )( )

2 2

2

3 2

Δ , ,

sin 1
cos cos sin

1
cos sin sin

sin sin

sin sin sin .

x

x t

t

j j

j

j

j

y H y

H q t t t dt

q t q s t t s s dsdt

H
q t t t dt

H
q t q s t t s s dsdt



 



 





 

     


     

 

     



   




     



−

−

= +

= + + − −

+ − − − −

+ − −

+ −



− − −



 



 

 (2.5) 

It is easy to verify that ( )( )Δ 1,2j j =  is the characteristic function of ( )1,2jL j = , 

whose zeros coincide with the eigenvalues of ( )1,2jL j = . Now, using (2.5) by the well-

known method ([12], Ch.1), we obtain zeros of ( )Δ j   

 
( ) ( ) ( )1 2

2

1 , , 1j jj

n

j

a I C n a A n
n O

a n n

 




+ +  
= + +  

 
. (2.6) 

Where 

( )

( ) ( ) ( )( )

( ) ( )

( ) ( )

1

1

2

,

1
, cos 2 ,

2

1
, sin ,

2

1
, cos .

2

I q t dt

A q t t dt

C

C








   

  

  

=

= −

=

=




           (2.7) 

Moreover, 
( ) 

0

j

n
n




 is the spectrum of ( ) ( ) ( )( )
2

1,2 ,
j j

j n nL j  = = . Since the 

( )Δ , 1, 2j j = , are entire in   in order 
1

2
, by Hadamard's factorization theorem, the 

characteristic functions are uniquely determined by spectra of ( )1,2jL j = . The following 

lemma holds by the well-known method ([12], Ch.1). 

Lemma 2.1. The characteristic function ( )( )Δ 1,2j j = , which is entire functions of   

of order 1/ 2 , can be uniquely determined by the specification of the spectrum 

( )  ( )
0

1,2
j

n
n

j


=  and ( )1,2ja j =  by the formula 
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 ( )
( )

2
1

j

n
j j

n

a
n

 
 



=

−
 =  . (2.8) 

3. Main Result: 

In this section we prove the uniqueness of the solution. Firstly we give the following 

lemmas. 

Lemma 3.1. The spectrum 
( ) 1

0
n

n



 of the boundary spectral problem 1L  uniquely 

determines the delay  . 

Proof. Since there are infinitely many kN  and 0   with property ( )sin 0k   . 

From the assumption 
1 0I  , we have 

( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

( ) ( )

( )

1 12 2

2 2

1 12 2

1 1

1 1

1 1

1 1

1 1

( 2) ( 2)
lim

( 1) ( 1)

2 cos 2 2 cos 22 2

lim
2 cos 1 2 cos 12 2

cos 2 cos 2
lim

cos 1 cos 1

sin sin 2
lim 2cos .

sin sin

k k

k
k k

k

k

k

k k

k k

I k I k

a a

I k I k

a a

k k

k k

k

k

 

 

 

   

 

   

 

 

 


 

− +

→
− +

→

→

→

− − − + +

− − − + +

− +
+ − −

=
− +

+ − −

− − +
=

− − +

= =

 

Therefore, we obtain 

 

( ) ( )

( ) ( )

1 12 2

2 2

1 12 2

1 1

( 2) ( 2)1
arccos lim .

2 ( 1) ( 1)

k k

k
k k

k k

k k

 


 

− +

→
− +

 − − − + +
=  

− − − + +  
 (3.1) 

Lemma 3.2. Let  − Q . The spectrum 
( ) 1

0
n

n



 of the boundary spectral problem 1L  

uniquely determines 1I . 

Proof. From (2.5) we conclude 
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 ( ) ( ) ( )
( )( ) Im

1 1

1 1

cos
Δ sin cos .

2

a I e
a O

   
   



−  
= + + +   

 
 (3.2) 

Since 1 0a  , from (2.8) and (3.2) we have 

 

( )

( )
( ) ( )( )1 Im

1

2
1 1

coscos
sin .

2

n

n

I e
O

n a

    
  





=

−  −
= − + + +   

 


 (3.3) 

By some calculation, it is easy to see that the zeros 
1

: ,
2

n n n n 
 

= +  
 

Z  of ( )cos   

and the zeros 

1

2
: ,m m

m

m



 
 

  
+    =  
− 

  

Z  of ( )( )cos   − . It is easy to prove that 

the assumption  − Q  implies the functions ( )cos   and ( )( )cos   −  do not 

have any common zeros. Denote 

 

1

2
: : , ,

m

G m



  
 

  
+  

  = −   
− 

  

Z  

where   is sufficiently small, then there exist constant C  such that 

 ( )( ) ( )
cos 0, .

t
C e G

 

    
−

−      

Letting 
1

2
m m = +  for all mN  in the formula of (3.3), we find 

( ) ( )( ), cos 0, cos 0m m mG C       = −   , then substituting 
1

2
m m = +  into 

(3.3), we arrive at 

 

( ) ( )
2

1

1

2
1

11
cos

21 12
( 1) .

2 2

m
m

n

I mm

m O
m

 






=

   
+ −+ −            = − + + +   
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Finally, we get 

 

( )

( )

2

1

1

21

1

1

1 2
( 1)

2
2 lim

1
cos

2

m
m

n

m

m

m
m

I

m





 

−

=

→

 
+ − 

   − + + 
 =

  
+ −  

  


. (3.4) 

Lemma 3.3. Let  − Q . The spectra 
( )  ( )

0
1,2

j

n
n

j


=  of boundary spectral problems 

( )1,2jL j =  uniquely determine (ja j =  1,2) , respectively. 

Proof. From (2.6), we have 

 
( ) ( )

1

2

1

2 1
lim cos .

j

j n
n

a n I n 
 

−

→

 
= − − 

 
 (3.5) 

Consequently we finish the proof. 

According to Lemma 3.1-Lemma 3.4, the delay  , the integral ( )1I q t dt



=   and 

( )1,2jH j =  are uniquely determined by the spectra 
( ) 

0

j

n
n




 of ( )1,2jL j =  

Next we derive the main equation of the solution of the inverse problem.  

Firstly we use the function ( ) ( ),q t K t  and notations ( ) ( ),c sa a  , ( ) ( ),c sk k   in 

[20]. Then integrating ( ) ( ),c sk k   by parts, we have 

 
( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )*

  cos 2 cos 2

cos 2 2 ,

t

c

s

k K t t dt t d K s ds

K s ds k





  











    

    

− −

−

= − = −

= − −

  



 

 
( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )*

sin 2 sin 2

sin 2 2 ,

t

s

c

k K t t dt t d K s ds

K s ds k

  

   

 



    

    

− −

−

= − = −

= − − +
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Where 

 ( ) ( ) ( )( )* sin 2 ,
t

sk K s t dsdt


 


  

−

= −   

 ( ) ( ) ( )( )* cos 2 .
t

ck K s t dsdt


 


  

−

= −   

From [20] we know ( ) 2K t dt I
 



−

= − . Thus, we get 

 

2

* *

2 2

* 2

*

( ) ( ) ,

( ) cos( ( 2 )) 2 ( ), ( ) sin( ( 2 )) 2 ( ),

sin( ( 2 ))
( ) ( ) cos( ( 2 )) ( ),

( ) ( ),

t

t

c s s c

t

c c

s s

K s ds I K s ds

k I k k I k

I
k K s t dsdt k

k k

 



 

 

           

  
   



 

−

−

= − −

= − − − = − −

−
= − = − +

=

 

 
  

Where 

 ( ) ( ) ( )( )cos 2 ,c
t

k K s t dsdt
   


  

− −

= − −   

 ( ) ( ) ( )( )sin 2 .s
t

k K s t dsdt
   


  

− −

= − −   

Therefore (2.5), it is easy to show that the characteristic function has the formz

 

( ) ( )
( )

( ) ( )( ) ( )

( )
( )( ) ( ) ( )( ) ( )

( )
( )( ) ( )

2

1

2

*

1 22 2

2

*

23

sin 1
Δ cos sin

2

1
cos cos 2

2 2

sin 2 .
2

j j s

j

c s

j

c

H I a

H
I a I k

H
I k


      

 


        

 


    



 = + + − − 

   − − − + − +   

 − − + 

 

(3.6) 

We define function ( )jA   
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( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

2 2 2 2

2

1 1

2 Δ 2 sin 2 cos

sin cos .

j j j

j

A H

I H I

       

       

= − −

− − + −
 (3.7) 

Function ( )jA   is determined by 
( )  ( )

0
1,2

j

n
n

j


= , and from (3.6) and (3.7) we have 

 
( )

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

2

2 2

2 * *

sin 2 cos 2

.

j

j

j c c s s

H
A I I

H a k a k


      



     

+ − − −

   = − − −   

 (3.8) 

Let 

 ( ) ( )
( )

( )( ) ( )( )
2

1

1 2 2sin 2 cos 2 ,
H

A A I I


       


= + − − −  

 ( ) ( ) ( )
( ) ( )

( )( )
2 2

1 2

2 1 2sin 2 ,
H H

B A A I
 

     


+
= − + −  

it is obvious that ( )A   and ( )B   can be uniquely determined by 
( )  ( )

0
1,2

j

n
n

j


= . 

Then, from (3.8), we have 

 ( ) ( ) ( ) ( ) ( ) ( )2 * *

1 c c s sA H a k a k         = − − −     (3.9) 

and  

 ( ) ( ) ( ) ( ) ( )2 2 *

2 1 .c cB H H a k       = − −  
 (3.10) 

According to (B.प) and (B.10) for  , 0m m = Z� , we get 

 

( )2 2
1

2

2

2

( ) ( 1) ( )cos(2 ) ( 1) ( )cos(2 )

( 1) ( )sin(2 ) ( 1) ( )sin(2 )

m m

t

m m

t

A m H m q t mt dt K s mt dsdt

m q t mt dt K s mt dsdt


    





    




− − −

− − −

 
= − − − 

 

 
+ − − − 

 

  

  

 

(3.11) 
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and 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 1

2

2

( 1) cos 2 ( 1) cos 2 .m m

t

B m H m H m

q t mt dt K s mt dsdt







   − −−

 = − 
 

 
− − − 

 
  

 

Then, from the assumption ( ) ( ) ( )2 2 2

2 1: 0H m H m H m= −  , we can get 

 
( )

2

2
2

( 1)
( )cos(2 ) ( )cos(2 ) ( )

m

t
q t mt dt K s mt dsdt B m

H m


    




− − − −
− = −  

 (3.12) 

and 

( ) ( ) ( ) ( ) ( )
( )
( )

( )
2

1
2

2
2

( 1)
sin 2 sin 2 .

m

t

H m
q t mt dt K s mt dsdt A m B m

m mH m






 



 −− − −
− = −  

 (3.13) 

Also, from (3.10) we have 

 ( ) ( ) ( )2

0
1 22

1
lim .

t
q t dt K s dsdt B

b b

   





 


− −−

→
− =

−    (3.14) 

We define function  * : 0,K  → R , i.e., 

 ( )
( ) ( )

( ) ( )

*
, ,

0, 0, ,

t
K s ds t

K t
t

 

  

   

−  −
= 

 −

  (3.15) 

Let 

 ( ) ( ) ( )  * : , 0,q t K t g t t − =   

using (3.12), (3.13), and (3.14), then the Fourier series of ( )g t  is 

 ( ) ( ) ( )0

1

cos 2 sin 2
2

n n

m

a
g t a mt b mt

+

=

 = + +   (3.16) 
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Where 

 ( ) ( )
( )

( )2
0

0
1 22

2 2 2
lim ,

t
a q t dt K s dsdt B

b b











  


  

− −−

→
= − =

−    

 

( ) ( ) ( ) ( )

( )
( )

2

2

2

2 2
cos 2 cos 2

2( 1)
, 1,

n
t

m

a q t mt dt K s ds mt dt

B m n
H m

  









 



− − −

= −

−
= − 

  
 

 

( ) ( ) ( ) ( )

( )
( )
( )

( )

2

2

2

1

2

2 2
  sin 2 sin 2

2 ( 1)
, 1.

n
t

m

b q t mt dt K s ds mt dt

H m
A m B m n

m mH m

  









 



− −−

= −

 −
 = − 
 
 

  
 

Therefore, 

( ) ( )

( )
( )

 

1

2 2

2
1

2

0

  cos 2 sin 2

2 ( 1)
 

2

1
  ,

n n

m

m i mt i mt

m

imt

m

m

a mt b mt

e e
B m

H m

c e





+

=

−+

=



 + 

 − − +
=


=






‚

 

where 

 
( )

( )
( ) ( ) ( ) ( )

( )

1 2 2

1

2 2

( 1)( 1)
.

mm

m

A m H m H m B m
c B m i

H m mH m

−− +−
= − +  

Since ( )g t  is continuous function, according to Fourier series convergence theorem, we 

get 

 ( ) ( )  , 0,
t

q t K s ds h t
 


−

− =   (3.17) 
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where 
( )

( )
 

2

0 0
1 2

1 1
lim imt

mm
h B c e

b b
 

 
→ 

= +
−

 Z ‚
. 

It follows from the Lemma 3.1-Lemma 3.3 that the right-hand side of (3.17) is uniquely 

determined by spectra 
( ) 

0

j

n
n




 of , 1, 2jL j = . 

Theorem 3.4. The potential ( )q x  is uniquely determined by spectra 
( ) 

0

j

n
n




 of jL  

Proof. Since the potential ( )q x  satisfies integral equation (3.17), we only need to show 

uniqueness of solution of this equation. From the defination of ( )K s  in [20], we have 

( )    0, 0, \ ,
t

K s ds t
 

   
−

=  − . 

(1) For t ,
2


  
 

 − − 
 

, we have ( ) 0
t

K s ds
 −

= . Therefore, integral equation (3.1) 

has a form: 

 ( ) ( )q t f t=  

The right-hand side of (3.17) is determined by 
( )  ( )

0
1,2

j

n
n

j


=  of jL . Then from the 

definition of ( )q t  [20], the potential ( )q x  is determined for ,
2

x


 
 

 − 
 

. 

(2) For t ,
2




 
 
 

, we have ( ) 0
t

K s ds
 −

= . Therefore, integral equation (3.1) has a 

form: 

 ( ) ( )q t f t=  

The right-hand side of (3.17) is determined by 
( )  ( )

0
1,2

j

n
n

j


=  of jL . Then from the 

definition of ( )q t  [20], the potential ( )q x  is determined for 
3

,
2

x



 

 
 

.  

(3) For ( t ,   − , according to the defination of ( )K s , we can easily show that 

arguments of the potential ( )q x  appearing in the function 



International Journal of Research and Analysis in Science and Engineering 

36 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
s

t t s s
K s ds q s q u du q s q u du q u q u s du ds

 

 





 


+ +

− −

= + − + −      

belong to the intervals  2 , ,
2


   

 
 − 
 

 and  
3

, ,
2


   

 
−   

 
. Then the function 

( )
t

K s ds
 −

  is known. Therefore from (3.]) for ( ,t    − . Then from the definition 

of ( )q t [20], the potential ( )q x  is determined for 
3

,
2 2

x
 


 
 − 
 

. 
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