
ISSN: 2582-8118 Volume 3, Issue 1; Jan 2023

International Journal of Research and

Analysis in Science and Engineering

Web: https://www.iarj.in/index.php/ijrase/index

1

1. A Multi-Trapdoor Editable Blockchain Scheme

Based on Shamir Secret Sharing for Federated

Learning

XueWei, ChungenXu, LeiXu, LinMei, PanZhang
School of Mathematics and Statistics,

Nanjing University of Science and Technology,

Nanjing, Jiangsu, China.

ABSTRACT

Federated learning is a popular learning mechanism. A server coordinates many clients to

complete the training process of the model. However, there is a problem of poisoning
attacks in federated learning. For example, the client may send malicious parameters to

damage the global model's performance. To reduce the clients' dishonest behavior during

training, some schemes are committed to scoring the clients' parameters to get the

reputation value and storing the reputation value on the blockchain to achieve the clients'

incentive and further reduce the poisoning attack during the federated learning process.

However, due to the non-editable nature of the blockchain, when the reputation value stored

on the blockchain is incorrect, it cannot be modified. This problem leads to the unfairness

of the scheme that relies on traditional blockchain to store reputation value to motivate
clients. We improved the original chameleon hash function to solve this problem and

proposed a new multi-trap editable blockchain scheme.

Besides, we combined the dynamic Shamir secret sharing technology to ensure the trap

door's security and avoid trap door centralization. We use our editable blockchain to store

the reputation value generated in federated learning. It not only realizes the client's
incentive but also effectively reduces dishonest behavior during training and supports the

modification of the reputation value on the blockchain.

Our scheme ensures the client can participate fairly in the federated learning training task.

Experiments show that our editable blockchain scheme supports the safe modification of

reputation value and has significant function advantages compared with existing schemes.

KEYWORDS

Federated Learning, Blockchain, Shamir Secret Sharing, Chameleon Hash Function.

International Journal of Research and Analysis in Science and Engineering

2

Introduction:

In the era of big data, Internet companies and individual users create a large amount of data

daily. These data are of great value. Using these data for training can obtain corresponding

models, which can be used for prediction, classification, etc12. However, in real life, more
than the data of a single company or user is often needed to support the training of a model

with good performance. Obtaining a good performance model often requires a large amount

of data to participate in training.

Therefore, to get a better model, many enterprises will collect a large amount of data for
unified training, which is machine learning3456, That is, the data of multiple companies or

users are collected together and trained by a centralized central cloud server. However,

collecting a large amount of data in real life is often a considerable challenge.

On the one hand, in most industries, data exist in the form of islands. Due to industrial

competition, national policies and other issues, even among different departments of the
same company, there are still many obstacles to achieving data integration. In reality, it is

almost impossible to integrate data scattered in different places and institutions, Or the cost

is enormous. On the other hand, in machine learning, users or enterprises need to send their
data to the central server, and the central server will use these data for unified training to

get the final model. However, personal data contains a lot of private information, and the

direct upload of data will cause many privacy disclosure problems. Therefore, many users

or companies prefer to keep their sensitive data private from a third party.

For example, companies or research institutions often face the difficulty of collecting
enough personal medical data in healthcare applications because patients want their privacy

to be kept private. Lack of training data will lead to poor performance of the model finally

trained. To avoid directly sharing sensitive data, Federated Learning789 emerged at the

historic moment.

Federated learning, also known as collaborative learning, distributed learning. In federated

learning, all participants (either companies or individuals) collaborate to train a shared

model under the coordination of a trusted central server without disclosing their sensitive
data information. In this process, each participant only needs to use their data to train the

model locally and upload the intermediate parameters to the central cloud server. The

central cloud server aggregates the received parameters and sends the aggregation results to

the participants to continue the model's training process. Obviously, in the process of federal

learning, the participants' sensitive data is still kept locally, protecting data privacy.

However, in federated learning, the client that used to be responsible for providing data is

now a participant involved in the whole training process. We can't guarantee that each client

will faithfully perform the local training process, nor can we guarantee that malicious
adversaries will not control the client to produce dishonest behavior. Previous research has

proved that the adversary can disrupt the whole training process through poisoning

attacks10111213, this will affect the final model's performance. Such operations may also

indirectly infringe on clients' data. For example, by uploading the inverted and amplified
gradient, the opponent can infer whether the sample is used for training the target model14.

Therefore, this poses new challenges to federal learning.

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

3

At present, some defense mechanisms have been proposed against poisoning attacks. For

example, the Multi-krum scheme15 mainly identifies parameters which significantly differ

from the parameters and treats them as malicious parameters. Precisely, the Euclidean
distance between the client and other parameters is calculated and summed in each iteration.

The client's parameters with the minimum Euclidean distance will as the aggregation

parameters and returned to the client participating in the training. Contra16 detects the
parameters of malicious clients by evaluating the angle difference of model parameters

between clients; GeoMed17 uses the difference of Lp norm between client parameters to

identify malicious parameters. Khazbak et al.18 used cosine similarity between gradients
to identify malicious clients. Clients considered malicious would not participate in the

model's aggregation process. Liu et al.19 used the Pearson coefficient between the client

model parameters and the average value of all client model parameters to identify malicious

clients and assigned a lower weight to the identified malicious clients in the aggregation

process to reduce their impact.

However, these schemes often limit the number of malicious clients. When the number of

malicious clients is too large, these methods will fail. In order to make up for the

shortcomings of the above schemes, some scholars combine federated learning with
blockchain, use reputation as an indicator to evaluate the reliability or credibility of the

client according to its past behavior202122, and store the reputation value on the

blockchain, so that the subsequent task initiator can select the client by referring to the

reputation value on the blockchain before the model training task starts,

For example, Zhang et al.23 used model cross entropy to evaluate the model quality of
clients and used it as a measure of reputation evaluation, and stored the reputation value on

the public chain for subsequent reference; Kang et al.24 also designed a reputation based

client selection scheme. Unlike the previous scheme, this scheme mainly uses the alliance
blockchain to manage the reputation value of clients, and selects clients based on the

reputation value. However, although the existing schemes can effectively calculate the

reputation value of the client and store the reputation value on the blockchain, so as to ensure
that before the start of the federated learning task, the task initiator can judge the reliability

of the client by referring to the corresponding reputation value of the client on the

blockchain and then select the client, the above schemes store the reputation value on the

traditional blockchain, Due to the non-editable nature of blockchain, when a malicious
adversary masquerades as an honest client and produces bad behavior, the client's reputation

value will be low and unmodifiable, which will lead to a lower probability that the client

will participate in other model training tasks than other clients.

To solve the above challenges, we introduce editable blockchain technology into joint
learning for the first time in this paper. We have implemented an editable blockchain

federated learning scheme, which uses blockchain to store reputation values and support

secure modification of reputation values. Specifically, we have made the following three

contributions:

• Based on the chameleon hash function, we propose a new editable blockchain scheme
to ensure the modifiability of reputation value on the blockchain. We combine the

editable blockchain with federated learning for the first time to realize the incentive for

clients.

International Journal of Research and Analysis in Science and Engineering

4

• We combine Shamir secret sharing technology to ensure the security of the trapdoor in

the reputation value modification process and avoid the trapdoor centralisation problem

in reputation value modification.
• We simulated the modification scheme of reputation value on our editable blockchain

and compared it with the existing scheme. The experiment shows that our scheme's

performance is in an acceptable range and has significant advantages in function

compared with the current scheme.

Next, we will introduce our scheme from the definition of the scheme model, design

objectives, scheme construction, security analysis and other aspects.

2. Background Knowledge:

Next, we will briefly introduce the background knowledge required for our work.

2.1 Federated Learning:

Federated learning aims to train a classifier F (such as image classification) through

distributed training so that F can correctly classify the new sample. Federated learning was

initially proposed by Google to solve the problem of android terminal users updating their
models locally. In federated learning, each client's data will not leave the local and only

need to upload the model parameters obtained by local training.

Federated learning is usually participated by one server S and N clients. Server S is

mainly responsible for aggregating the model parameters of the client, and each client iC

has a local private data set with a size of il , il is the total amount of data

involved in the training.

In each round of training, the client will use the global model w of the previous round and

its local data for training. Specifically, the client starts from
1t

Gw −
, running the stochastic

gradient descent(SGD) algorithm on each data group to minimize the corresponding loss

function and get the local model parameter
t

iu , then calculate the model update

1t t t

i i Gw u w −= − and sends it to the server. Then the server aggregates ,

where i

i

l

l
 = . The training process will be repeated until reaching the pre-specified training

rounds or the model accuracy reaches the pre-required standard.

2.2 Additive Secret Sharing:

The primary purpose of additive secret sharing25 is to share a secret s between two parties.

We choose a random value r , share r with the first party, and share s r− with the second

party. Obviously, the two secret shares are random so no one can calculate relevant

information about the secret s . As long as the two parties add their respective secret shares,

the secret s will be revealed.

1 2{ , ,..., }
i

i i i

i lD x x x=

1

1

N
t t t

G G i i

i

w w w−

=

= +

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

5

The additive secret sharing scheme consists of the following algorithms:

Sharing Algorithm(Shr(∙)). Assuming that the client U has a secret value of u with l

bits, then U selects a random value
2lr Z , and then calculates the two secret shares of u

, respectively: 0 () 2lu u r mod  = − ,
1u r  = . Then send

0u  , 1u  to two servers, 0CS

and 1CS .

Reconfiguration Algorithm(Rec(∙)). If a third party S needs to recover the secret value

, 0CS sends its own secret share
0u  to S , and 1CS also sends its secret share 1u  to

S , then S can calculate
0 1u u u=   +   to get the secret value.

Here is an introduction to the addition and multiplication of secret values using the addition

secret sharing scheme.

Addition. Suppose the two secret values are u and v , among them, the secret shares of

secret value u are
0u  and 1u  , the secret shares of the secret value are

0v  and 1v 

, server 0CS owns
0u  and

0v  , owns 1u  and 1v  . In order to calculate u v+ ,

0CS calculate
0 0 0u v u v +  =   +   , 1CS calculate 1 1 1u v u v +  =   +   , 0CS and 1CS

exchange the secret share of u v+ , then calculate

0 1 0 0 1 1u v u v u v u v u v +  +  +  =   +   +   +   = + . It is also true when there are N

secret values. Therefore, the addition secret sharing satisfies the addition homomorphism.

Multiplication. Suppose that the two secret values are u and v , where the secret shares of

the secret value u are
0u  and 1u  . The secret shares of the secret value v are

0v  and

1v  . In order to calculate uv , we need a pre-defined multiplicative triplet (, ,)a b c , where

,a b is randomly selected in
2lZ , and 2lc ab mod= . Server iCS has the secret shares

corresponding to multiplication triples, ia  , ib  , ic  , and then each server calculates

i i iu a  =   −   ,
i i iv b  =   −  . The two servers collaborative calculate

0 1  =   +   ,
0 1  =   +   , then

0CS calculate
000 0c    +  =     +   ,

1CS calculate
1 1 1 1c       = +   +   +   , then 0CS and 1CS collaborative

calculate
0 1 uv  =   +   = . When u v= , we can get

2u through the above calculation

method.

2.3 Chameleon Hash Function based on Discrete Logarithm:

Assume that q , N are two large prime numbers and that 1N kq= + ,
*

NZ is a group of

order q , and g is the generator of the group
*

NZ . We set trap door
*

Nsk Z , public key

skpk g mod N= .

u

v

1CS

International Journal of Research and Analysis in Science and Engineering

6

(), , ,Hash pk m r g : Enter the public key pk and give a message
*

Nm Z and a random

value
*

Nr Z , we can get chameleon hash (), , , m rHash pk m r g g pk mod N= .

(), , ,Forge sk m r m : Enter trapdoor sk , original message m , random number r and new

message m , and output a new random number r , which can satisfy

(), , , m rch Hash pk m r g g pk mod N
  = = .

Because of () (), , , , , ,Hash pk m r g Hash pk m r g = , so we can ge
m r m rg pk g pk

 
= ,

then, we can get m skr m skr+ = + , then
m m

r r mod N
sk

−
 = + .

2.4 Editable Blockchain:

Blockchain26 is a chain-like structure that stores data in blocks and chronologically

connects blocks from end to end. It collectively maintains a reliable distributed database in
a decentralized and untrusted way and simultaneously maintains a distributed ledger using

technologies such as timestamp and hash function.

As shown in Figure 1, each block contains the block header and block body, where the block

header contains the parent block hash, version number, timestamp, difficulty value, random
number and Merkle root. The block body contains the information of all transactions in this

block. The corresponding hash value of these transactions constitutes a Merkle tree, which

can be used to verify the authenticity of data quickly. The value of the Merkle root is stored
in the block header. In the blockchain, the information contained in the transaction is shown

in Figure 1: "Version" refers to the version number of the transaction, "T-ID" refers to the

unique identifier of the transaction in the entire blockchain network, "Data" is used to

Figure 1 : Block Composition

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

7

storing transaction information, "Information" refers to the relevant information used in the

process of calculating the transaction, "Group" refers to the miner collection for verifying

the transaction, and "Lock Time" refers to the transaction lock time.

The editable blockchain scheme27 mainly uses the physical editing method and is mainly
used in data storage. In the editable blockchain, the block header still uses the traditional

hash calculation. In contrast, the hash value of the transaction in the Merkle tree of the block

body is calculated by the chameleon hash function, which makes it convenient for us to
achieve transaction-level editing accuracy. In the editable blockchain, the trapdoor owner

can calculate the conflict of the chameleon hash in polynomial time to ensure that the hash

value before and after transaction editing remains unchanged and then ensure that the

Merkle tree root information in the block header remains unchanged.

3. Problem Statement:

3.1 System Model:

In our system, there are five basic entities:

• Key Distribution Center(KGC): KGC is a fully trusted entity. KGC is mainly

responsible for generating two pairs of public and private keys 1 1 2 2(,), (,)sk pk sk pk

required for the chameleon hash function and broadcasting the public keys
1pk and

2pk . Then KGC generates the corresponding secret polynomial of the threshold t

according to Shamir secret sharing scheme and randomly selects ix , calculating the

i th− secret share
1 2(, (), (), 1,2, ,)i i ix Shr x Shr x i n= of 1sk and

2sk through

Shamir secret sharing scheme and distributing to supervisor iR . KGC

will go offline after distributing the key and secret share.

• Cloud Server(CS): Our system includes a cloud server, which is recorded as CS . The

server will truthfully collect parameter updates from the client, then complete the

calculation process of reputation value and return the aggregated parameters.

• Remote Client(iC): The client is the owner of the training data in federated learning.

They train the model on their local private data and then send their parameters to the

cloud server. The server CS will verify the parameters and get the corresponding

reputation value. However, some clients may be controlled by enemies or misbehave

due to other external reasons. In addition, we assume that the data held by all clients are
independent and distributed, which is the same as many previous works2829.

• Miner(iM): Miners are mainly responsible for chaining the reputation value generated

by the cloud server.

• Set of Regulators(, iR R): Our system includes a set of supervisors, including a leader

()R and n supervisor ()iR . The supervisors cooperate with the leader to complete the

modification of the reputation value stored on the blockchain. We also assume that
supervisors and the leader are honest but curious, which means they will perform their

1 2((), ())i iShr x Shr x

International Journal of Research and Analysis in Science and Engineering

8

tasks honestly but still be curious about the data they obtained. In addition, we assume

that leaders will not collude with supervisors, and at most 1t − supervisors will collude.

3.2 Threat Model and Security Objectives:

Threat Model: In this chapter, we mainly consider external adversaries. External malicious

adversaries will attempt to tamper with the reputation value stored on the blockchain

according to the characteristics of the editable blockchain. For example, a client will try to

change the reputation value on the blockchain to a higher reputation value to have a greater
chance to participate in the model training of other task initiators. Some adversaries also try

to change the lower reputation value on the blockchain to a higher reputation value or

attempt to interfere with the model's training process and tamper with the reputation value

of other clients.

Security Objectives: Our security goal is to ensure the safe modification of the reputation

value. Any external adversary has no privilege to modify the reputation value. The leader

and supervisor can only modify the reputation value in cooperation, and the leader and

supervisor cannot complete the modification of the reputation value alone unless they
cooperate. To achieve this goal, in our scheme, we use Shamir secret sharing technology to

divide the trap door into n shares and send them to n supervisors to ensure that neither

supervisors nor leaders will know the specific value of the trap door.

4. Scheme Construction:

In this section, we first discuss the overview of our proposed scheme. The overall structure

of our scheme is shown in Figure 2. In addition, the symbols and related descriptions used

in this chapter are listed in Table 1 for reference.

Figure 2 : System Architecture

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

9

Table 1 : Parameter Distribution

1sk
, 2sk Two trap doors of editable blockchain

1pk
, 2pk Public key corresponding to trap door

m Reputation value of the client

L Number of clients

newm The new reputation value of the client

n Number of supervisors

t Threshold value of Shamir secret sharing scheme

The sum of malicious scores obtained from the

previous k rounds during training of the client i

1()iShr x The i th− Shamir secret share of private key 1sk

2 ()iShr x The i th− Shamir secret share of private key
2sk

4.1 System Initialization:

The trusted key generation center (KGC) generates two pairs of public and private keys

1 1(,)sk pk and 2 2(,)sk pk required for the editable blockchain. Then KGC broadcasts the

public key
1pk and 2pk , selects the secret polynomial according to the threshold value t ,

and calculates the commitment value corresponding to the polynomial and broadcast it to
ensure that the supervisor can verify the secret share after receiving it. Next, KGC uses the

Shamir secret sharing scheme to divide 1sk and
2sk into n shares and distribute them to

n supervisors. KGC will go offline after distributing the key and secret share. At the same

time, all miners received the public key
1pk and 2pk . In addition, at the beginning of

training, CS initializes the global model initw randomly.

Specifically, let q and N be two large prime numbers and satisfy 1N kq= + , is the

group of order q , and g is the generator of the group
*

NZ , (,)N g is public. First, KGC

generated the public and private key pairs
1 1(,)sk pk and 2 2(,)sk pk , among, 1

1

skpk g=

and 2

2

sk
pk g= , 1sk and

2sk are two trap doors. Then KGC selects the secret polynomial
2 3 1

1 1 1 2 3 1() t

tShr x sk a x a x a x a x −

−= + + + + + , 2 3 1

2 2 1 2 3 1() t

tShr x sk b x b x b x b x −

−= + + + + + ,

calculates the commitment value 11 1

1 (, , ,)task aC g g g −= ， 12 1

2 (, , ,)tbsk bC g g g −= in advance,

and public it. Then KGC calculates the secret shares of trapdoor 1sk and
2sk , which are

1 1 1{ () (, ())}n

i i i is x x Shr x == ， 2 2 1{ () (, ())}n

i i i is x x Shr x == , and sends
1 2(, (), ())i i ix s x s x to

the supervisor iR and to the leader R .

()is k

*

NZ

1 2(, , ,)nx x x

International Journal of Research and Analysis in Science and Engineering

10

After receiving the secret share value
1 2(, (), ())i i ix s x s x and commitment 1 2,C C ,

supervisor iR verifies whether the equations of
() ()1

1

0

j
i

ji

t x
aShr x

j

g g
−

=

= ，

() ()2

1

0

j
i

ji

t x
Shr bx

j

g g
−

=

= are true. If it is true, it means that the received secret share is indeed

distributed by KGC and has not been tampered with by the adversary. Then the supervisor

will save their secret share. When the reputation value needs to be modified, supervisors

will use their secret share to modify the reputation value.

In addition, each system node has a unique ID, and there is a specific random number

function library to provide the parameter for the chameleon hash function.

4.2 Calculate Reputation Value:

Client local training: The client's local training process includes the local training and the

parameter sending stage. Specifically, client iC uses the dataset to train the local model and

get the local parameter iw and sends it to CS .

Calculate malicious score: Since the calculation of the reputation value is not the focus of

this paper, we use the cosine similarity between client parameters to calculate the reputation

value. Precisely, after receiving local parameters, CS will calculate

1,

1 L
p i

i i q p i

w w
s

L w w= 


= 

‖ ‖ ‖ ‖
 to get the malicious score.

Since training tasks usually require multiple rounds, storing malicious scores of each round
of the client will cause high storage costs and great inconvenience to the reference of the

task initiator. So we take the average of all malicious scores obtained during training as the

final client's reputation value. Calculating reputation value is shown in the Algorithm 1.

Specifically, the server CS initializes the client's reputation value as 0 and then obtains the

reputation value vector
1 2((0), (0), , (0)) (0,0, ,0)Ls s s = composed of the reputation

values of all clients. Then before the parameter aggregation of the k round training, CS

calculates the sum of the cosine similarity of the client parameters to get the client's

malicious score s . Then CS updates the client CS ’s reputation value

() (1)i is k s k s= − + and obtains the reputation value vector
1 2((), (), , ())Ls k s k s k of the k

round. When the training is over, CS calculates
()i

i

s K
s

K
= to get the reputation value of

client iC .

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

11

4.3 Reputation Value Storage Up Chain:

Let us first introduce the composition of each transaction in the blockchain, as shown in

Figure 1. "Version" refers to the version number of the transaction, "T_ID" refers to the
unique identifier of the transaction in the entire blockchain network, "Data" is used to store

the transaction information, which mainly refers to the reputation value of the client,

"Information" refers to the relevant information used in the calculation of the transaction,

"Group" refers to the ID of the set of Shamir secret shares randomly selected by the system,

that is, the ID set of the supervisor, and "Lock Time" refers to the transaction lock time.

Specifically, the process of the reputation value chain is divided into the following steps:

Step 1: After the server generates the reputation value m , the miner will calculate
mg and

use the random number 1r generated by the system to calculate

1 1 1 2

1 1 2 1 2(, , ,)
r m sk r skmH m r pk pk g pk pk g

+  +
=   = , where the reputation value is stored

in "Data" and 1 1 2, ,r pk pk is stored in "Information" and generate transactions.

m

Algorithm 1 : Reputation value calculation algorithm

Input: Client reputation value vector
1 2((0), (0), , (0))Ls s s , Reputation value of

the clients s , Training round K , Number of clients L .

Output:
1 2(, , ,)Ls s s .

1. 0CS initialize the reputation value vector of the client

1 2((0), (0), , (0)) (0,0, ,0)Ls s s = ;

2. FOR K =1 to K

3. FOR 1i = to L

4.
 0CS calculates the malicious score s of iC ;

5.
 0CS updates iC 's reputation value: () (1)i is k s k s= − + ;

6. END FOR

7. END FOR

8. FOR 1i = to L

9.
 0CS calculates:

()i
i

s K
s

K
=

10. END FOR

11. RETURN
1 2(, , ,)Ls s s

International Journal of Research and Analysis in Science and Engineering

12

Step 2: After the system generates the transaction, the transaction is sent to each miner node

through the P2P network to form a unified transaction pool to prepare for reaching

consensus. Other miner nodes will verify whether the received reputation value is legal.
After the verification, a block will be generated to record the verified reputation value, and

then proof of work(PoW)2630 will be run to reach a consensus. Finally, the generated

blocks will be added to the blockchain, also known as distributed ledgers, which means that

the reputation value is successfully stored on the blockchain.

4.4 Reputation Value Modifications:

Algorithm 2 : Reputation value modification algorithm

Input: new reputation value newm , random number a

Output:
2r

1. KGC generates the private key sk and calculate the corresponding secret

share 1{ () (, ())}n

i i i is x x Shr x == according to the secret polynomial ()Shr x ;

2. KGC sends ()is x to iR ;

3. Leader R randomly selects values from
1 2(, , ,)nx x x , and calculates:

4.

 1,

(1)tt
j

i

j j i i j

x
b

x x= 

−
=

−
 ;

5. Leader R calculates the additive secret share
new im m −  of newm m− ；

6. Leader R sends and
new im m −  to the corresponding supervisor

iR ;

7. iR

calculate:

8.
 1 1() () is i shr i b a=  

9.
 2 2() () is i shr i b a=   ;

10.

() () is i shr i b a=   ;

11.

() new im i m m a=  −   ;

12.
 2() () () ()secret i m i s i s i= + − ;

13. iR sends 1()s i and ()secret i
to the leader R ;

14. Leader R calculates:

15.

1 1

1

()
t

i

sum s i
=

= ;

16.

 1

2 s c ()e
t

i

retsum i
=

= ;

17.

2
2 1

1

sum
r r

sum
= + ;

18. RETURN 2r

t

ib

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

13

After the reputation value is linked, the trap door owner can modify the content on the

blockchain due to the characteristics of the editable blockchain. However, there is an

excellent risk of centralization when the trap door belongs to only one person. In addition,
the editable blockchain scheme based on the discrete logarithmic chameleon hash function

has a deadly problem. Because the information stored on the blockchain is open and

transparent, when the message
1m and newm , random number 1r and

2r is known, the trap

door will be easy to infer, which also leads to other people also can modify the information.
To avoid these two problems, we designed a multi-trap door scheme combined with Shamir

secret sharing scheme. On the one hand, it ensured that the trap door would not belong to

one person, avoiding the single-point problem, and on the other hand, we designed a multi-
trap door scheme to ensure the security of the trap door. In addition, to prevent malicious

adversaries from launching man-in-the-middle attacks, we assume that the messages sent

between leaders and supervisors are sent after the sign, which will not be explained below.

The process of reputation value modification is described in detail as follows:

Step 1: The leader initiates the transaction editing request. The request includes information
such as editing reason, editing content, etc. Then the leader broadcasts the editing request

to the whole network. The supervisor participating in the transaction will verify the validity

of the editing request. If the authentication passes, continue to step 2. Otherwise, the

application will be rejected.

Step 2: After the application is approved, the supervisor will request the KGC. KGC

generates a new public and private key (,pk sk) and distributes the secret share

corresponding to sk to the supervisor.

Step 3: After receiving the secret share of the new private key sk , the supervisor cooperates

with the leader to calculate the edited parameter and keep the chameleon hash value of
the transaction unchanged. First, according to the characteristics of chameleon hash, We

can get 1 1 1 2

1 1 2 1 2(, , ,) r m sk r skmH m r pk pk g pk pk g +  +=   = ,

1 22

2 1 1(, , ,) new newm m sk r skr

newH m r pk pk g pk pk g
+  +

=   = , So the new random number
2r can be

calculated as follows: 1 2

2 1

1

newm m sk sk
r r

sk

− + −
= + .

The calculation process refers to the Algorithm 2, which is described as follows:

When the reputation value needs to be modified, KGC first generates a new public-private

key pair (,)sk pk , distributes the secret share of to the supervisor, and distributes pk

to the leader. Then the leader randomly selects t values from the
1 2(, , ,)nx x x . Here we

assume that the leader chooses
1 2, , , tx x x , then calculates

1,

(1)tt
j

i

j j i i j

x
b

x x= 

−
=

−
 and the

additive secret share of newm m− , and sends
ib and

new im m −  to

the corresponding supervisor iR . After receiving and
new im m −  , each supervisor iR

calculates 1() ishr i b ,
2() ishr i b and () ishr i b ,

r

sk

(1,2, ,)new im m i t −  =

ib

International Journal of Research and Analysis in Science and Engineering

14

according to their secret share. To avoid the leader recovering the trap door value based on

the secret value, all supervisors will use the same random number generator to generate the

same random number a , then calculate
1 1() () is i shr i b a=   ,

2 2() () is i shr i b a=   ,

() () is i shr i b a=   , and calculate () new im i m m a=  −   , then calculate 2 ()s i , ()s i and

 to get
2() () () ()secret i m i s i s i= + − , and send

1()s i

and ()secret i to the leader R . Because the leader owns

2 2() () () () (() ())new i i isecret i m i s i s i m m shr i b shr i b a= + − =  −  +  −   , they cannot

get the information about the trap door, but leaders can calculate 1 1

1

()
t

i

sum s i
=

= ,

2

1

()
t

i

sum secret i
=

= , and leaders can calculate 2
2 1

1

sum
r r

sum
= + , there is

1 1 2 2 1(, , ,) (, , ,)newHash m r pk pk Hash m r pk pk= , so using
2r , leaders can successfully

modify the reputation value m , and during the process, leaders cannot obtain any

information about the double-trap door.

The secret shares will be updated regularly to prevent malicious adversaries from attacking

the secret shares held by the supervisor. Specifically, KGC updates a secret polynomial

() 2 3 1

1 2 3 1

t

th x h x h x h x h x −

−= + + + + , calculates the commitment value

, and makes it public. Then KGC calculates the corresponding secret

shares ()() 1{ , }n

i i i ihs x h x == and sends them to the supervisor
iR . the supervisor

iR will

verify the commitment after receiving the new secret share and update their secret share

value () () () ()()1 2, ,i i i i ix h x Shr x h x Shr x+ + after the verification, thus completing the

security update of the secret share.

Step 4: Broadcast
2r and newm to the entire network, and all miner nodes update the

transaction data on the chain.

According to the characteristics of the chameleon hash, when we use the editable blockchain
to store the reputation value generated during training, for other external adversaries,

because the trap door is not known, the chameleon hash still has the anti-collision

characteristics, which also ensures the reliability of the reputation value on the blockchain.

Before the start of other training tasks, the task initiator can refer to the reputation value
stored on the blockchain to select the client and select the client with a high reputation value

to participate in the training, which realizes the incentive to the client.

When the reputation value stored on the blockchain is incorrect, the leader and the

supervisor can cooperate to modify the reputation value due to the characteristics of the

chameleon hash function. At the same time, our scheme can reduce the impact of malicious

adversaries and ensure that benign clients can participate in the model training fairly.

()m i

()11 , , taaC g g −=

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

15

5. Security Proof:

5.1 Correctness Proof:

First, according to the characteristics of chameleon hash, we have

1 1 2 2 1(, , ,) (, , ,)newH m r pk pk H m r pk pk= , which means 1 11 1 2 newm sk r skm sk r sk
g g

+  ++  +
= . Then

we can get:
1 1 2 1 1newm sk r sk m sk r sk+  + = +  + . Therefore, the new random number

1 2
2

1

newm m sk sk
r

sk

− + −
= . So we only need to prove that the

2r calculated in the Algorithm

2 is the above form.

In the Algorithm 2, 1sum is calculated as follows:

1sum = 1

1

()
t

i

s i
=

 =
1

1 1,

(1)
()

ttt
j

i j j i i j

x
shr i a

x x= = 

−
 

−
  =

2sum is calculated as follows:

2sum =
1

()
t

i

secret i
=

 = 2

1

(() () ())
t

i

m i s i s i
=

+ − =
2(())newm m sk sk a− + − 

Therefore, .

Therefore, calculating the random number
2r is correct.

5.2 Security Proof:

EB-FL ensures that leaders, supervisors and external adversaries cannot obtain the trap

value while modifying the reputation value.

Proof：

In the Algorithm 2, because each supervisor only has the secret share of the trap door, we

assume that at most only 1t − supervisors may collude. According to the security of the

Shamir secret sharing scheme, the supervisor will not obtain any information about the trap

door value while modifying the reputation value. Then we prove that leaders will not get

any information about trap door value.

During modifying the reputation value, the leader gains
1()s i and ()secret i , namely

1 1 1() () i is i shr i b a sk a=   =   and .

1sk a

2 22

1 1 1 2

1 1 1

(()) ()new newm m sk sk a m m sk sksum
r r r r

sum sk a sk

− + −  − + −
+ = + = + =



2 2() () () () ()new isecret i m i s i s i m m sk sk a= + − = − + −  

International Journal of Research and Analysis in Science and Engineering

16

Obviously, the leader cannot get any information about the trap door from
1 isk a   and

2()new im m sk sk a − + −   . In addition, when calculating
2r , the leader can get

1sk a

and
2(())newm m sk sk a− + −  . Because of the random number a , the leader does not

know the specific value of the trap door in the whole process. This ensures that each

modification of the reputation value needs to be completed by the leader and the supervisor.

In the process of modifying the reputation value, the leader and the supervisor will not get
the information about the trap door. Therefore, the process of modifying the reputation value

is safe. External adversaries can only try to infer the trap value by intercepting the

information sent by the leader and supervisors, but the analysis is the same as above. The

adversary can only obtain the trap value with a disturbance at most and cannot get the actual

value of the trap door, so our process of modifying the reputation value is safe.

6. Experimental Result

This section carries out simulation experiments for our scheme, mainly uses python to

construct a simple blockchain, simulates the process of reputation value up-chain and

reputation value modification in EB-FL, and calculates its corresponding time cost. Since
our experiment is simulated on a single machine, we omit the communication time cost

between the supervisor and the leader due to information transmission. We mainly focus on

the time cost of calculating the new random number corresponding to the chameleon hash
function through secret sharing technology and the time the miners spend to complete the

consensus agreement.

6.1 Analysis of Experimental Results:

Experimental setup: In our experiment, we set up ten clients and then defined the number

of supervisors as n =6. The parameters involved in the experiment are described as follows:

the sizeable prime number q used in the chameleon hash is randomly generated by the

system, and its length is guaranteed to be 20. In addition, we need at least three supervisors
to participate in modifying the reputation value. That is, the threshold of the Shamir secret

sharing scheme is 3. In addition, in the POW consensus protocol, we set the difficult target

to satisfy four zeros at the end of the hash value corresponding to the random number.

Evaluation Index:

• Single Score Time: To express our experimental results more clearly, we modify each
client's reputation value and obtain the time cost corresponding to the new random

number generated for each client to show the corresponding time difference when

modifying the reputation value of different clients.

• Multiple Score Time: When modifying reputation values, we sometimes must modify

multiple reputation values simultaneously. Here, we use Multiple Score Time to
represent the time cost of the leader and supervisors modifying multiple reputation

values simultaneously.

• Single Time: We use Single Time to represent the time cost of modifying the reputation

value and completing the consensus. That is, the sum of the time cost of the new random
number calculated by the leader and the supervisor and the time cost of the miner

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

17

completing the POW consensus agreement.

• Multiple Time: We use Multiple Time to represent the time cost of multiple reputation

value modifications and completing the consensus. That is, the sum of the time cost of
the new random number calculated by the leader and supervisor and the time cost of the

miner completing the POW consensus agreement in the multiple reputation value

modification process.

6.2 Performance Analysis:

In our experiment, we mainly focus on the time cost of calculating the new random number
in the process of transaction modification. After calculating the client's credit score, the

client's index, reputation value, and time will be packaged into transactions, which will be

stored on the blockchain. When the reputation value is incorrect, the leader and supervisor

can work together to modify the reputation value. In Figure 3, we show the time consumed
to calculate the new random number corresponding to each client when modifying the

reputation value of the client. We can see that the time cost consumed is stable between

0.991 ms ~ 0.998 ms, and the average time is 0.997 ms. We can see that the time cost
consumed in calculating the new random number is low, which also shows that our scheme

has high efficiency in calculating the random number. In addition, we show the time cost

when modifying multiple transactions simultaneously in Figure 4. It can be seen that when

only one transaction is modified, the corresponding time cost is about 0.998 ms. In contrast,
when two transactions are modified, the corresponding time cost is about 1.975 ms, and

when three transactions are modified, the corresponding time cost is about 2.792 ms. It can

be seen that with the increase of transactions, the corresponding time cost of modifying

transactions is also gradually increasing. This also corresponds to the results in Figure 3.

In addition, miners must reach a consensus after calculating the new random number to

modify the new reputation value. Here we use the POW consensus mechanis, and the
difficult problem we set is that the last four digits of the hash value corresponding to the

random number are 0. Figure 5shows the time cost of calculating the random number and

completing the POW consensus in modifying each client's reputation value. It can be seen

that although the time cost consumed by the client has an inevitable fluctuation, the overall
difference does not exceed 1 ms, and the average time cost is 51.154 ms. Obviously,

Figure 4 : Blockchain single transaction Figure 3 : Blockchain multiple

transactions

International Journal of Research and Analysis in Science and Engineering

18

compared with the time cost of completing the POW consensus, the time cost of calculating

the random number can be ignored, which also shows that our reputation value modification

scheme will not bring a significant time cost and is generally stable within an acceptable
range. Figure 6 shows the time cost of calculating the random number and completing the

POW consensus when modifying the reputation value of multiple clients simultaneously.

Since miners only need to reach a consensus once when modifying multiple reputation

values simultaneously, the increased time cost is only the time cost corresponding to
calculating the random number as the number of transactions increases. It can be seen from

the figure that when modifie multiple reputation values, the time cost of modifying multiple

reputation values at one time will be much lower than the time cost of modifying different
reputation values multiple times, because miners only need to reach a consensus once,

which greatly reduces the time cost.

The above experiment results show that the time cost caused by EB-FL's reputation value

modification is generally stable within an acceptable range.

 6.3 Functional Analysis:

In this section, we mainly compare EBSC27, IMRF24, TrustedTe30 to highlight the effect

of our scheme, as shown in Table 2.

Table 2 : Scheme comparison

Reputation value can

be modified

Reputation value

can be modified

multiple times

Safety of trapdoor

EB-FL √ √ √

EBSC √ × ×

IMRFL × × \

TrustedTed × × \

Figure 6 : Blockchain single transaction Figure 5 : Blockchain multiple transactions

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

19

The EBSC scheme mainly uses Shamir secret sharing technology and the original

chameleon hash to construct a decentralized editable blockchain scheme. Although it can

support the modification of information on the blockchain, the information on the
blockchain can only be modified once because the modified trap door value will leak due

to the characteristics of the chameleon hash. So it cannot guarantee the security of the trap

door, Nor can it guarantee the safe modification of information on the blockchain. IMRFL
and TrustedTed both store the client's reputation value in the blockchain, and the difference

is that IMRFL adopts the alliance chain, while TrustedTed adopts the public chain.

However, the reputation value of these two schemes cannot be modified. In the long run, it
cannot achieve true fairness and will inevitably cause high storage costs. In contrast, our

scheme EB-FL not only supports the modification of the reputation value but also ensures

that the trap door will not leak during the modification of the reputation value, thus ensuring

the security of the reputation value.

It can be seen that our scheme has certain advantages in terms of efficiency and function.

7. Summary:

This paper proposes an editable blockchain scheme based on chameleon hash, which mainly

improves the chameleon hash function of the single trapdoor. This scheme combined with

the Shamir secret sharing technology to design a decentralized editable blockchain with

multiple trapdoors. This blockchain is used to store the reputation value during the training
process of federated learning, which can support the safe modification of the reputation

value. At the same time, for the security and stability of the system, In combination with

the dynamic secret sharing scheme, we regularly update the secret component of the trap
door owned by the supervisor to ensure that the adversary cannot obtain the trap value by

attacking the secret component of the supervisor. We use the editable blockchain to store

the reputation value generated during the training process of the federated learning model,
which can provide reference for other model training tasks in the future, and can also

achieve incentives for the client, which can mitigate dishonest behaviors of clients during

model training.

8. References:

1. T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: A simple deep learning
baseline for image classification?” IEEE transactions on image processing, vol. 24,

no. 12, pp. 5017–5032, 2015.

2. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.

Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE

Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

3. P. Watcharapichat, V. L. Morales, R. C. Fernandez, and P. Pietzuch, “Ako:
Decentralised deep learning with partial gradient exchange,” in The Seventh ACM

Symposium on Cloud Computing. USA: ACM, 2016, pp. 84–97.

4. S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neural networks
over the cloud, the edge and end devices,” in 2017 IEEE 37th international conference

on distributed computing systems. USA: IEEE Computer Society, 2017, pp. 328–339.

5. K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and

International Journal of Research and Analysis in Science and Engineering

20

O. Mutlu, “Gaia: Geo-distributed machine learning approaching LAN speeds,” in 14th

USENIX Symposium on Networked Systems Design and Implementation. USA:

USENIX Association, 2017, pp. 629–647.
6. J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated learning

for healthcare informatics,” Journal of Healthcare Informatics Research, vol. 5, no. 1,

pp. 1–19, 2021.

7. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efffficient learning of deep networks from decentralized26 data,” in

20th International Conference on Artificial Intelligence and Statistics. USA: PMLR,

2017, pp. 1273–1282.
8. V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task

learning,” Advances in neural information processing systems, vol. 30, pp. 4424–4434,

2017.
9. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,

J. Konečnỳ, S. Mazzocchi, B. McMahan et al., “Towards federated learning at scale:

System design,” Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

10. C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated learning in sybil
settings,” in 23rd International Symposium on Research in Attacks, Intrusions and

Defenses. Spain: USENIX Association, 2020, pp. 301–316.

11. J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack in federated learning
using generative adversarial nets,” in 13th IEEE International Conference On Big Data

Science And Engineering. New Zealand: IEEE, 2019, pp. 374–380.

12. E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor

federated learning,” in International Conference on Artificial Intelligence and
Statistics. Online: PMLR, 2020, pp. 2938–2948.

13. M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks to byzantine-

robust federated learning,” in 29th USENIX Security Symposium. USA: USENIX
Association, 2020, pp. 1605–1622.

14. M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep

learning: Passive and active white-box inference attacks against centralized and
federated learning,” in 2019 IEEE symposium on security and privacy. USA: IEEE,

2019, pp. 739–753.

15. P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with

adversaries: Byzantine tolerant gradient descent,” 27 Advances in Neural Information
Processing Systems, vol. 30, pp. 119– 129, 2017.

16. S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning attacks in federated

learning,” in European Symposium on Research in Computer Security. Germany:
Springer, 2021, pp. 455–475.

17. D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning:

Towards optimal statistical rates,” in International Conference on Machine Learning.
Sweden: PMLR, 2018, pp. 5650– 5659.

18. Y. Khazbak, T. Tan, and G. Cao, “Mlguard: Mitigating poisoning attacks in privacy

preserving distributed collaborative learning,” in 2020 29th International Conference

on Computer Communications and Networks. USA: IEEE, 2020, pp. 1–9.
19. X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-enhanced federated

learning against poisoning adversaries,” IEEE Transactions on Information Forensics

and Security, vol. 16, pp. 4574–4588, 2021.
20. J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward secure

blockchain-enabled internet of vehicles: Optimizing consensus management using

A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing…

21

reputation and contract theory,” IEEE Transactions on Vehicular Technology, vol. 68,

no. 3, pp. 2906–2920, 2019.

21. Y. Liu, K. Li, Y. Jin, Y. Zhang, and W. Qu, “A novel reputation computation model
based on subjective logic for mobile ad hoc networks,” Future Generation Computer

Systems, vol. 27, no. 5, pp. 547–554, 2011.

22. X. Huang, R. Yu, J. Kang, Z. Xia, and Y. Zhang, “Software defined networking for
energy harvesting internet of things,” IEEE Internet of Things Journal, vol. 5, no. 3,

pp. 1389–1399, 2018.

23. Q. Zhang, Q. Ding, J. Zhu, and D. Li, “Blockchain empowered reliable federated
learning by worker selection: A trustworthy reputation evaluation method,” in 2021

IEEE Wireless Communications and Networking Conference Workshops. China:

IEEE, 2021, pp. 1–6.

24. J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reliable
federated learning: A joint optimization approach to combining reputation and contract

theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.

25. I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Annual Cryptology Conference. USA:

Springer, 2012, pp. 643–662.

26. M. Risius and K. Spohrer, “A blockchain research framework,” Business &
Information Systems Engineering, vol. 59, no. 6, pp. 385–409, 2017.

27. S. Fan and Y. Chen, “Editable blockchain scheme based on shamir chameleon hash

secret sharing,” in 6th Information Technology and Mechatronics Engineering

Conference, vol. 6. China: IEEE, 2022, pp. 1125–1128.
28. G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. Deng, “Privacy preserving federated

deep learning with irregular users,” IEEE Transactions on Dependable and Secure

Computing, vol. 19, no. 2, pp. 1364– 1381, 2022.
29. G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumventing defenses

for distributed learning,” Advances in Neural Information Processing Systems, vol. 32,

pp. 8632–8642, 2019.

30. M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in Secure
information networks. Belgium: Springer, 1999, pp. 258–272.

31. M. H. Rehman, A. M. Dirir, K. Salah, E. Damiani, and D. Svetinovic, “Trustfed: a

framework for fair and trustworthy cross-device federated learning in iiot,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8485–8494, 2021.

