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ABSTRACT  

Federated learning is a popular learning mechanism. A server coordinates many clients to 

complete the training process of the model. However, there is a problem of poisoning 
attacks in federated learning. For example, the client may send malicious parameters to 

damage the global model's performance. To reduce the clients' dishonest behavior during 

training, some schemes are committed to scoring the clients' parameters to get the 

reputation value and storing the reputation value on the blockchain to achieve the clients' 

incentive and further reduce the poisoning attack during the federated learning process.  

However, due to the non-editable nature of the blockchain, when the reputation value stored 

on the blockchain is incorrect, it cannot be modified. This problem leads to the unfairness 

of the scheme that relies on traditional blockchain to store reputation value to motivate 
clients. We improved the original chameleon hash function to solve this problem and 

proposed a new multi-trap editable blockchain scheme.  

Besides, we combined the dynamic Shamir secret sharing technology to ensure the trap 

door's security and avoid trap door centralization. We use our editable blockchain to store 

the reputation value generated in federated learning. It not only realizes the client's 
incentive but also effectively reduces dishonest behavior during training and supports the 

modification of the reputation value on the blockchain.  

Our scheme ensures the client can participate fairly in the federated learning training task. 

Experiments show that our editable blockchain scheme supports the safe modification of 

reputation value and has significant function advantages compared with existing schemes. 
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Introduction: 

In the era of big data, Internet companies and individual users create a large amount of data 

daily. These data are of great value. Using these data for training can obtain corresponding 

models, which can be used for prediction, classification, etc12. However, in real life, more 
than the data of a single company or user is often needed to support the training of a model 

with good performance. Obtaining a good performance model often requires a large amount 

of data to participate in training.  

Therefore, to get a better model, many enterprises will collect a large amount of data for 
unified training, which is machine learning3456, That is, the data of multiple companies or 

users are collected together and trained by a centralized central cloud server. However, 

collecting a large amount of data in real life is often a considerable challenge. 

On the one hand, in most industries, data exist in the form of islands. Due to industrial 

competition, national policies and other issues, even among different departments of the 
same company, there are still many obstacles to achieving data integration. In reality, it is 

almost impossible to integrate data scattered in different places and institutions, Or the cost 

is enormous. On the other hand, in machine learning, users or enterprises need to send their 
data to the central server, and the central server will use these data for unified training to 

get the final model. However, personal data contains a lot of private information, and the 

direct upload of data will cause many privacy disclosure problems. Therefore, many users 

or companies prefer to keep their sensitive data private from a third party.  

For example, companies or research institutions often face the difficulty of collecting 
enough personal medical data in healthcare applications because patients want their privacy 

to be kept private. Lack of training data will lead to poor performance of the model finally 

trained. To avoid directly sharing sensitive data, Federated Learning789 emerged at the 

historic moment. 

Federated learning, also known as collaborative learning, distributed learning. In federated 

learning, all participants (either companies or individuals) collaborate to train a shared 

model under the coordination of a trusted central server without disclosing their sensitive 
data information. In this process, each participant only needs to use their data to train the 

model locally and upload the intermediate parameters to the central cloud server. The 

central cloud server aggregates the received parameters and sends the aggregation results to 

the participants to continue the model's training process. Obviously, in the process of federal 

learning, the participants' sensitive data is still kept locally, protecting data privacy. 

However, in federated learning, the client that used to be responsible for providing data is 

now a participant involved in the whole training process. We can't guarantee that each client 

will faithfully perform the local training process, nor can we guarantee that malicious 
adversaries will not control the client to produce dishonest behavior. Previous research has 

proved that the adversary can disrupt the whole training process through poisoning 

attacks10111213, this will affect the final model's performance. Such operations may also 

indirectly infringe on clients' data. For example, by uploading the inverted and amplified 
gradient, the opponent can infer whether the sample is used for training the target model14. 

Therefore, this poses new challenges to federal learning. 
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At present, some defense mechanisms have been proposed against poisoning attacks. For 

example, the Multi-krum scheme15 mainly identifies parameters which significantly differ 

from the parameters and treats them as malicious parameters. Precisely, the Euclidean 
distance between the client and other parameters is calculated and summed in each iteration. 

The client's parameters with the minimum Euclidean distance will as the aggregation 

parameters and returned to the client participating in the training. Contra16 detects the 
parameters of malicious clients by evaluating the angle difference of model parameters 

between clients; GeoMed17 uses the difference of Lp norm between client parameters to 

identify malicious parameters. Khazbak  et al.18 used cosine similarity between gradients 
to identify malicious clients. Clients considered malicious would not participate in the 

model's aggregation process. Liu et al.19 used the Pearson coefficient between the client 

model parameters and the average value of all client model parameters to identify malicious 

clients and assigned a lower weight to the identified malicious clients in the aggregation 

process to reduce their impact. 

However, these schemes often limit the number of malicious clients. When the number of 

malicious clients is too large, these methods will fail. In order to make up for the 

shortcomings of the above schemes, some scholars combine federated learning with 
blockchain, use reputation as an indicator to evaluate the reliability or credibility of the 

client according to its past behavior202122, and store the reputation value on the 

blockchain, so that the subsequent task initiator can select the client by referring to the 

reputation value on the blockchain before the model training task starts,  

For example, Zhang et al.23 used model cross entropy to evaluate the model quality of 
clients and used it as a measure of reputation evaluation, and stored the reputation value on 

the public chain for subsequent reference; Kang et al.24 also designed a reputation based 

client selection scheme. Unlike the previous scheme, this scheme mainly uses the alliance 
blockchain to manage the reputation value of clients, and selects clients based on the 

reputation value. However, although the existing schemes can effectively calculate the 

reputation value of the client and store the reputation value on the blockchain, so as to ensure 
that before the start of the federated learning task, the task initiator can judge the reliability 

of the client by referring to the corresponding reputation value of the client on the 

blockchain and then select the client, the above schemes store the reputation value on the 

traditional blockchain, Due to the non-editable nature of blockchain, when a malicious 
adversary masquerades as an honest client and produces bad behavior, the client's reputation 

value will be low and unmodifiable, which will lead to a lower probability that the client 

will participate in other model training tasks than other clients. 

To solve the above challenges, we introduce editable blockchain technology into joint 
learning for the first time in this paper. We have implemented an editable blockchain 

federated learning scheme, which uses blockchain to store reputation values and support 

secure modification of reputation values. Specifically, we have made the following three 

contributions: 

• Based on the chameleon hash function, we propose a new editable blockchain scheme 
to ensure the modifiability of reputation value on the blockchain. We combine the 

editable blockchain with federated learning for the first time to realize the incentive for 

clients. 
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• We combine Shamir secret sharing technology to ensure the security of the trapdoor in 

the reputation value modification process and avoid the trapdoor centralisation problem 

in reputation value modification. 
• We simulated the modification scheme of reputation value on our editable blockchain 

and compared it with the existing scheme. The experiment shows that our scheme's 

performance is in an acceptable range and has significant advantages in function 

compared with the current scheme. 

Next, we will introduce our scheme from the definition of the scheme model, design 

objectives, scheme construction, security analysis and other aspects. 

2. Background Knowledge: 

Next, we will briefly introduce the background knowledge required for our work. 

2.1 Federated Learning: 

Federated learning aims to train a classifier F (such as image classification) through 

distributed training so that F  can correctly classify the new sample. Federated learning was 

initially proposed by Google to solve the problem of android terminal users updating their 
models locally. In federated learning, each client's data will not leave the local and only 

need to upload the model parameters obtained by local training. 

Federated learning is usually participated by one server S  and N  clients. Server S  is 

mainly responsible for aggregating the model parameters of the client, and each client iC  

has a local private data set  with a size of il , il  is the total amount of data 

involved in the training. 

In each round of training, the client will use the global model w  of the previous round and 

its local data for training. Specifically, the client starts from 
1t

Gw −
, running the stochastic 

gradient descent(SGD) algorithm on each data group to minimize the corresponding loss 

function and get the local model parameter 
t

iu , then calculate the model update 

1t t t

i i Gw u w −= −  and sends it to the server. Then the server aggregates , 

where i

i

l

l
 = . The training process will be repeated until reaching the pre-specified training 

rounds or the model accuracy reaches the pre-required standard. 

2.2 Additive Secret Sharing: 

The primary purpose of additive secret sharing25 is to share a secret s  between two parties. 

We choose a random value r , share r  with the first party, and share s r−  with the second 

party. Obviously, the two secret shares are random so no one can calculate relevant 

information about the secret s . As long as the two parties add their respective secret shares, 

the secret s  will be revealed. 

1 2{ , ,..., }
i

i i i

i lD x x x=

1

1

N
t t t

G G i i

i

w w w−

=

= +
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The additive secret sharing scheme consists of the following algorithms: 

Sharing Algorithm(Shr(∙)). Assuming that the client U  has a secret value of u with l  

bits, then U  selects a random value 
2lr Z , and then calculates the two secret shares of u

, respectively: 0 ( ) 2lu u r mod  = − , 
1u r  = . Then send  

0u  , 1u   to two servers, 0CS  

and 1CS . 

Reconfiguration Algorithm(Rec(∙)). If a third party S  needs to recover the secret value 

, 0CS  sends its own secret share 
0u   to S , and 1CS  also sends its secret share 1u   to 

S , then S  can calculate 
0 1u u u=   +    to get the secret value. 

Here is an introduction to the addition and multiplication of secret values using the addition 

secret sharing scheme. 

Addition. Suppose the two secret values are u  and v , among them, the secret shares of 

secret value u  are 
0u   and 1u  , the secret shares of the secret value  are 

0v   and 1v 

, server 0CS  owns 
0u   and 

0v  ,  owns 1u   and 1v  . In order to calculate u v+ , 

0CS  calculate 
0 0 0u v u v +  =   +   , 1CS  calculate 1 1 1u v u v +  =   +   , 0CS  and 1CS  

exchange the secret share of u v+ , then calculate 

0 1 0 0 1 1u v u v u v u v u v +  +  +  =   +   +   +   = + . It is also true when there are N  

secret values. Therefore, the addition secret sharing satisfies the addition homomorphism. 

Multiplication. Suppose that the two secret values are u  and v , where the secret shares of 

the secret value u  are 
0u   and 1u  . The secret shares of the secret value v  are 

0v   and 

1v  . In order to calculate uv , we need a pre-defined multiplicative triplet ( , , )a b c , where 

,a b  is randomly selected in 
2lZ , and 2lc ab mod= . Server iCS  has the secret shares 

corresponding to multiplication triples, ia  , ib  , ic  , and then each server calculates 

i i iu a  =   −   , 
i i iv b  =   −  . The two servers collaborative calculate 

0 1  =   +   , 
0 1  =   +   , then 

0CS  calculate 
000 0c    +  =     +   , 

1CS  calculate 
1 1 1 1c       = +   +   +   , then 0CS  and 1CS  collaborative 

calculate 
0 1 uv  =   +   = . When u v= , we can get 

2u  through the above calculation 

method. 

2.3 Chameleon Hash Function based on Discrete Logarithm: 

Assume that q , N  are two large prime numbers and that 1N kq= + , 
*

NZ  is a group of 

order q , and g  is the generator of the group 
*

NZ . We set trap door 
*

Nsk Z , public key 

skpk g mod N= . 

u

v

1CS
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( ), , ,Hash pk m r g : Enter the public key pk  and give a message 
*

Nm Z  and a random 

value 
*

Nr Z , we can get chameleon hash ( ), , , m rHash pk m r g g pk mod N= . 

( ), , ,Forge sk m r m : Enter trapdoor sk , original message m , random number r  and new 

message m , and output a new random number r , which can satisfy 

( ), , , m rch Hash pk m r g g pk mod N
  = = . 

Because of ( ) ( ), , , , , ,Hash pk m r g Hash pk m r g = , so we can ge
m r m rg pk g pk

 
= , 

then, we can get m skr m skr+ = + , then 
m m

r r mod N
sk

−
 = + . 

2.4 Editable Blockchain: 

Blockchain26 is a chain-like structure that stores data in blocks and chronologically 

connects blocks from end to end. It collectively maintains a reliable distributed database in 
a decentralized and untrusted way and simultaneously maintains a distributed ledger using 

technologies such as timestamp and hash function. 

As shown in Figure 1, each block contains the block header and block body, where the block 

header contains the parent block hash, version number, timestamp, difficulty value, random 
number and Merkle root. The block body contains the information of all transactions in this 

block. The corresponding hash value of these transactions constitutes a Merkle tree, which 

can be used to verify the authenticity of data quickly. The value of the Merkle root is stored 
in the block header. In the blockchain, the information contained in the transaction is shown 

in Figure 1: "Version" refers to the version number of the transaction, "T-ID" refers to the 

unique identifier of the transaction in the entire blockchain network, "Data" is used to 

Figure 1 : Block Composition 
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storing transaction information, "Information" refers to the relevant information used in the 

process of calculating the transaction, "Group" refers to the miner collection for verifying 

the transaction, and "Lock Time" refers to the transaction lock time. 

The editable blockchain scheme27 mainly uses the physical editing method and is mainly 
used in data storage. In the editable blockchain, the block header still uses the traditional 

hash calculation. In contrast, the hash value of the transaction in the Merkle tree of the block 

body is calculated by the chameleon hash function, which makes it convenient for us to 
achieve transaction-level editing accuracy. In the editable blockchain, the trapdoor owner 

can calculate the conflict of the chameleon hash in polynomial time to ensure that the hash 

value before and after transaction editing remains unchanged and then ensure that the 

Merkle tree root information in the block header remains unchanged. 

3. Problem Statement: 

3.1 System Model: 

In our system, there are five basic entities: 

• Key Distribution Center(KGC): KGC is a fully trusted entity. KGC is mainly 

responsible for generating two pairs of public and private keys 1 1 2 2( , ), ( , )sk pk sk pk  

required for the chameleon hash function and broadcasting the public keys 
1pk  and 

2pk . Then KGC generates the corresponding secret polynomial of the threshold t  

according to Shamir secret sharing scheme and randomly selects ix , calculating the 

i th−  secret share 
1 2( , ( ), ( ), 1,2, , )i i ix Shr x Shr x i n=  of 1sk  and 

2sk  through 

Shamir secret sharing scheme and distributing  to supervisor iR . KGC 

will go offline after distributing the key and secret share. 

• Cloud Server( CS ): Our system includes a cloud server, which is recorded as CS . The 

server will truthfully collect parameter updates from the client, then complete the 

calculation process of reputation value and return the aggregated parameters. 

• Remote Client( iC ): The client is the owner of the training data in federated learning. 

They train the model on their local private data and then send their parameters to the 

cloud server. The server CS  will verify the parameters and get the corresponding 

reputation value. However, some clients may be controlled by enemies or misbehave 

due to other external reasons. In addition, we assume that the data held by all clients are 
independent and distributed, which is the same as many previous works2829. 

• Miner( iM ): Miners are mainly responsible for chaining the reputation value generated 

by the cloud server. 

• Set of Regulators( , iR R ): Our system includes a set of supervisors, including a leader 

( )R  and n  supervisor ( )iR . The supervisors cooperate with the leader to complete the 

modification of the reputation value stored on the blockchain. We also assume that 
supervisors and the leader are honest but curious, which means they will perform their 

1 2( ( ), ( ))i iShr x Shr x
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tasks honestly but still be curious about the data they obtained. In addition, we assume 

that leaders will not collude with supervisors, and at most 1t −  supervisors will collude. 

3.2 Threat Model and Security Objectives: 

Threat Model: In this chapter, we mainly consider external adversaries. External malicious 

adversaries will attempt to tamper with the reputation value stored on the blockchain 

according to the characteristics of the editable blockchain. For example, a client will try to 

change the reputation value on the blockchain to a higher reputation value to have a greater 
chance to participate in the model training of other task initiators. Some adversaries also try 

to change the lower reputation value on the blockchain to a higher reputation value or 

attempt to interfere with the model's training process and tamper with the reputation value 

of other clients. 

Security Objectives: Our security goal is to ensure the safe modification of the reputation 

value. Any external adversary has no privilege to modify the reputation value. The leader 

and supervisor can only modify the reputation value in cooperation, and the leader and 

supervisor cannot complete the modification of the reputation value alone unless they 
cooperate. To achieve this goal, in our scheme, we use Shamir secret sharing technology to 

divide the trap door into n  shares and send them to n  supervisors to ensure that neither 

supervisors nor leaders will know the specific value of the trap door. 

4. Scheme Construction: 

In this section, we first discuss the overview of our proposed scheme. The overall structure 

of our scheme is shown in Figure 2. In addition, the symbols and related descriptions used 

in this chapter are listed in Table 1 for reference. 

 

Figure 2 : System Architecture 
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Table 1 : Parameter Distribution 

1sk
, 2sk  Two trap doors of editable blockchain 

1pk
, 2pk  Public key corresponding to trap door 

m  Reputation value of the client 

L  Number of clients 

newm  The new reputation value of the client 

n  Number of supervisors 

t  Threshold value of Shamir secret sharing scheme 

 
The sum of malicious scores obtained from the 

previous k  rounds during training of the client i  

1( )iShr x  The i th− Shamir secret share of private key 1sk  

2 ( )iShr x  The i th− Shamir secret share of private key 
2sk  

4.1 System Initialization: 

The trusted key generation center (KGC) generates two pairs of public and private keys 

1 1( , )sk pk  and 2 2( , )sk pk  required for the editable blockchain. Then KGC broadcasts the 

public key 
1pk  and 2pk , selects the secret polynomial according to the threshold value t , 

and calculates the commitment value corresponding to the polynomial and broadcast it to 
ensure that the supervisor can verify the secret share after receiving it. Next, KGC uses the 

Shamir secret sharing scheme to divide 1sk  and 
2sk  into n  shares and distribute them to 

n  supervisors. KGC will go offline after distributing the key and secret share. At the same 

time, all miners received the public key 
1pk  and 2pk . In addition, at the beginning of 

training, CS  initializes the global model initw  randomly. 

Specifically, let q  and N  be two large prime numbers and satisfy 1N kq= + ,  is the 

group of order q , and g  is the generator of the group 
*

NZ , ( , )N g  is public. First, KGC 

generated the public and private key pairs 
1 1( , )sk pk  and 2 2( , )sk pk , among, 1

1

skpk g=  

and 2

2

sk
pk g= , 1sk  and 

2sk  are two trap doors. Then KGC selects the secret polynomial 
2 3 1

1 1 1 2 3 1( ) t

tShr x sk a x a x a x a x −

−= + + + + + , 2 3 1

2 2 1 2 3 1( ) t

tShr x sk b x b x b x b x −

−= + + + + + , 

calculates the commitment value 11 1

1 ( , , , )task aC g g g −= ， 12 1

2 ( , , , )tbsk bC g g g −=  in advance, 

and public it. Then KGC calculates the secret shares of trapdoor 1sk  and 
2sk , which are 

1 1 1{ ( ) ( , ( ))}n

i i i is x x Shr x == ， 2 2 1{ ( ) ( , ( ))}n

i i i is x x Shr x == , and sends 
1 2( , ( ), ( ))i i ix s x s x  to 

the supervisor iR  and  to the leader R . 

( )is k

*

NZ

1 2( , , , )nx x x
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After receiving the secret share value 
1 2( , ( ), ( ))i i ix s x s x  and commitment 1 2,C C , 

supervisor iR  verifies whether the equations of 
( ) ( )1

1

0

j
i

ji

t x
aShr x

j

g g
−

=

= ，  

( ) ( )2

1

0

j
i

ji

t x
Shr bx

j

g g
−

=

=  are true. If it is true, it means that the received secret share is indeed 

distributed by KGC and has not been tampered with by the adversary. Then the supervisor 

will save their secret share. When the reputation value needs to be modified, supervisors 

will use their secret share to modify the reputation value. 

In addition, each system node has a unique ID, and there is a specific random number 

function library to provide the parameter for the chameleon hash function. 

4.2 Calculate Reputation Value: 

Client local training: The client's local training process includes the local training and the 

parameter sending stage. Specifically, client iC  uses the dataset to train the local model and 

get the local parameter iw  and sends it to CS . 

Calculate malicious score: Since the calculation of the reputation value is not the focus of 

this paper, we use the cosine similarity between client parameters to calculate the reputation 

value. Precisely, after receiving local parameters, CS  will calculate 

1,

1 L
p i

i i q p i

w w
s

L w w= 


= 

‖ ‖ ‖ ‖
 to get the malicious score.  

Since training tasks usually require multiple rounds, storing malicious scores of each round 
of the client will cause high storage costs and great inconvenience to the reference of the 

task initiator. So we take the average of all malicious scores obtained during training as the 

final client's reputation value. Calculating reputation value is shown in the Algorithm 1. 

Specifically, the server CS  initializes the client's reputation value as 0 and then obtains the 

reputation value vector 
1 2( (0), (0), , (0)) (0,0, ,0)Ls s s =  composed of the reputation 

values of all clients. Then before the parameter aggregation of the k  round training, CS  

calculates the sum of the cosine similarity of the client parameters to get the client's 

malicious score s . Then CS  updates the client CS ’s reputation value 

( ) ( 1)i is k s k s= − +  and obtains the reputation value vector 
1 2( ( ), ( ), , ( ))Ls k s k s k  of the k  

round. When the training is over, CS  calculates 
( )i

i

s K
s

K
=  to get the reputation value of 

client iC . 
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4.3 Reputation Value Storage Up Chain: 

Let us first introduce the composition of each transaction in the blockchain, as shown in 

Figure 1. "Version" refers to the version number of the transaction, "T_ID" refers to the 
unique identifier of the transaction in the entire blockchain network, "Data" is used to store 

the transaction information, which mainly refers to the reputation value of the client, 

"Information" refers to the relevant information used in the calculation of the transaction, 

"Group" refers to the ID of the set of Shamir secret shares randomly selected by the system, 

that is, the ID set of the supervisor, and "Lock Time" refers to the transaction lock time. 

Specifically, the process of the reputation value chain is divided into the following steps: 

Step 1: After the server generates the reputation value m , the miner will calculate 
mg  and 

use the random number 1r  generated by the system to calculate 

1 1 1 2

1 1 2 1 2( , , , )
r m sk r skmH m r pk pk g pk pk g

+  +
=   = , where the reputation value  is stored 

in "Data" and 1 1 2, ,r pk pk  is stored in "Information" and generate transactions. 

m

Algorithm 1 : Reputation value calculation algorithm 

Input: Client reputation value vector 
1 2( (0), (0), , (0))Ls s s , Reputation value of 

the clients s , Training round K , Number of clients L . 

Output: 
1 2( , , , )Ls s s . 

1. 0CS  initialize the reputation value vector of the client 

 
1 2( (0), (0), , (0)) (0,0, ,0)Ls s s = ; 

2. FOR K =1 to K  

3.   FOR  1i =  to L  

4. 
    0CS  calculates the malicious score s  of iC ; 

5. 
    0CS  updates iC 's reputation value: ( ) ( 1)i is k s k s= − + ; 

6. END FOR 

7.   END FOR 

8. FOR  1i =  to L  

9. 
 0CS calculates: 

( )i
i

s K
s

K
=  

10. END FOR 

11. RETURN 
1 2( , , , )Ls s s  
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Step 2: After the system generates the transaction, the transaction is sent to each miner node 

through the P2P network to form a unified transaction pool to prepare for reaching 

consensus. Other miner nodes will verify whether the received reputation value is legal. 
After the verification, a block will be generated to record the verified reputation value, and 

then proof of work(PoW)2630 will be run to reach a consensus. Finally, the generated 

blocks will be added to the blockchain, also known as distributed ledgers, which means that 

the reputation value is successfully stored on the blockchain. 

4.4 Reputation Value Modifications: 

 

Algorithm 2 : Reputation value modification algorithm 

Input: new reputation value newm , random number a  

Output: 
2r  

1. KGC  generates the private key sk  and calculate the corresponding secret 

share 1{ ( ) ( , ( ))}n

i i i is x x Shr x ==  according to the secret polynomial ( )Shr x ; 

2. KGC  sends ( )is x  to iR ; 

3. Leader R  randomly selects  values from 
1 2( , , , )nx x x , and calculates: 

4. 

   1,

( 1)tt
j

i

j j i i j

x
b

x x= 

−
=

−
 ; 

5. Leader R  calculates the additive secret share 
new im m −   of newm m− ； 

6. Leader R  sends  and 
new im m −   to the corresponding supervisor 

iR ; 

7. iR
 
calculate: 

8. 
   1 1( ) ( ) is i shr i b a=    

9. 
   2 2( ) ( ) is i shr i b a=   ; 

10. 
   

( ) ( ) is i shr i b a=   ; 

11. 
   

( ) new im i m m a=  −   ; 

12. 
   2( ) ( ) ( ) ( )secret i m i s i s i= + − ; 

13. iR  sends 1( )s i  and ( )secret i  
to the leader R ; 

14. Leader R  calculates: 

15. 

    
1 1

1

( )
t

i

sum s i
=

= ; 

16. 

    1

2 s c ( )e
t

i

retsum i
=

= ; 

17. 

    

2
2 1

1

sum
r r

sum
= + ; 

18. RETURN 2r  

t

ib
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After the reputation value is linked, the trap door owner can modify the content on the 

blockchain due to the characteristics of the editable blockchain. However, there is an 

excellent risk of centralization when the trap door belongs to only one person. In addition, 
the editable blockchain scheme based on the discrete logarithmic chameleon hash function 

has a deadly problem. Because the information stored on the blockchain is open and 

transparent, when the message 
1m  and newm , random number 1r  and 

2r  is known, the trap 

door will be easy to infer, which also leads to other people also can modify the information. 
To avoid these two problems, we designed a multi-trap door scheme combined with Shamir 

secret sharing scheme. On the one hand, it ensured that the trap door would not belong to 

one person, avoiding the single-point problem, and on the other hand, we designed a multi-
trap door scheme to ensure the security of the trap door. In addition, to prevent malicious 

adversaries from launching man-in-the-middle attacks, we assume that the messages sent 

between leaders and supervisors are sent after the sign, which will not be explained below. 

The process of reputation value modification is described in detail as follows: 

Step 1: The leader initiates the transaction editing request. The request includes information 
such as editing reason, editing content, etc. Then the leader broadcasts the editing request 

to the whole network. The supervisor participating in the transaction will verify the validity 

of the editing request. If the authentication passes, continue to step 2. Otherwise, the 

application will be rejected. 

Step 2: After the application is approved, the supervisor will request the KGC. KGC 

generates a new public and private key ( ,pk sk ) and distributes the secret share 

corresponding to sk to the supervisor.  

Step 3: After receiving the secret share of the new private key sk , the supervisor cooperates 

with the leader to calculate the edited parameter  and keep the chameleon hash value of 
the transaction unchanged. First, according to the characteristics of chameleon hash, We 

can get 1 1 1 2

1 1 2 1 2( , , , ) r m sk r skmH m r pk pk g pk pk g +  +=   = , 

1 22

2 1 1( , , , ) new newm m sk r skr

newH m r pk pk g pk pk g
+  +

=   = , So the new random number 
2r  can be 

calculated as follows: 1 2

2 1

1

newm m sk sk
r r

sk

− + −
= + . 

The calculation process refers to the Algorithm 2, which is described as follows: 

When the reputation value needs to be modified, KGC  first generates a new public-private 

key pair ( , )sk pk , distributes the secret share of  to the supervisor, and distributes pk  

to the leader. Then the leader randomly selects t  values from the 
1 2( , , , )nx x x . Here we 

assume that the leader chooses 
1 2, , , tx x x , then calculates 

1,

( 1)tt
j

i

j j i i j

x
b

x x= 

−
=

−
  and the 

additive secret share  of newm m− , and sends 
ib  and 

new im m −   to 

the corresponding supervisor iR . After receiving  and 
new im m −  , each supervisor iR  

calculates 1( ) ishr i b , 
2( ) ishr i b  and ( ) ishr i b , 

r

sk

( 1,2, , )new im m i t −  =

ib
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according to their secret share. To avoid the leader recovering the trap door value based on 

the secret value, all supervisors will use the same random number generator to generate the 

same random number a , then calculate 
1 1( ) ( ) is i shr i b a=   , 

2 2( ) ( ) is i shr i b a=   , 

( ) ( ) is i shr i b a=   , and calculate ( ) new im i m m a=  −   , then calculate 2 ( )s i , ( )s i  and 

 to get 
2( ) ( ) ( ) ( )secret i m i s i s i= + − , and send 

1( )s i  

and ( )secret i  to the leader R . Because the leader owns 

2 2( ) ( ) ( ) ( ) ( ( ) ( ) )new i i isecret i m i s i s i m m shr i b shr i b a= + − =  −  +  −   , they cannot 

get the information about the trap door, but leaders can calculate 1 1

1

( )
t

i

sum s i
=

= , 

2

1

( )
t

i

sum secret i
=

= , and leaders can calculate 2
2 1

1

sum
r r

sum
= + , there is 

1 1 2 2 1( , , , ) ( , , , )newHash m r pk pk Hash m r pk pk= , so using 
2r , leaders can successfully 

modify the reputation value m , and during the process, leaders cannot obtain any 

information about the double-trap door. 

The secret shares will be updated regularly to prevent malicious adversaries from attacking 

the secret shares held by the supervisor. Specifically, KGC  updates a secret polynomial 

( ) 2 3 1

1 2 3 1

t

th x h x h x h x h x −

−= + + + + , calculates the commitment value 

, and makes it public. Then KGC  calculates the corresponding secret 

shares ( )( ) 1{ , }n

i i i ihs x h x ==  and sends them to the supervisor 
iR . the supervisor 

iR  will 

verify the commitment after receiving the new secret share and update their secret share 

value ( ) ( ) ( ) ( )( )1 2, ,i i i i ix h x Shr x h x Shr x+ +  after the verification, thus completing the 

security update of the secret share.  

Step 4: Broadcast 
2r  and newm  to the entire network, and all miner nodes update the 

transaction data on the chain. 

According to the characteristics of the chameleon hash, when we use the editable blockchain 
to store the reputation value generated during training, for other external adversaries, 

because the trap door is not known, the chameleon hash still has the anti-collision 

characteristics, which also ensures the reliability of the reputation value on the blockchain.  

Before the start of other training tasks, the task initiator can refer to the reputation value 
stored on the blockchain to select the client and select the client with a high reputation value 

to participate in the training, which realizes the incentive to the client.  

When the reputation value stored on the blockchain is incorrect, the leader and the 

supervisor can cooperate to modify the reputation value due to the characteristics of the 

chameleon hash function. At the same time, our scheme can reduce the impact of malicious 

adversaries and ensure that benign clients can participate in the model training fairly. 

( )m i

( )11 , , taaC g g −=



A Multi-Trapdoor Editable Blockchain Scheme Based on Shamir Secret Sharing… 

15 

 

5. Security Proof: 

5.1 Correctness Proof: 

First, according to the characteristics of chameleon hash, we have 

1 1 2 2 1( , , , ) ( , , , )newH m r pk pk H m r pk pk= , which means 1 11 1 2 newm sk r skm sk r sk
g g

+  ++  +
= . Then 

we can get: 
1 1 2 1 1newm sk r sk m sk r sk+  + = +  + . Therefore, the new random number 

1 2
2

1

newm m sk sk
r

sk

− + −
= . So we only need to prove that the 

2r  calculated in the Algorithm 

2 is the above form. 

In the Algorithm 2, 1sum  is calculated as follows: 

1sum  = 1

1

( )
t

i

s i
=

  = 
1

1 1,

( 1)
( )

ttt
j

i j j i i j

x
shr i a

x x= = 

−
 

−
   =  

2sum  is calculated as follows:  

2sum  = 
1

( )
t

i

secret i
=

  = 2

1

( ( ) ( ) ( ))
t

i

m i s i s i
=

+ −  = 
2(( ) )newm m sk sk a− + −   

Therefore, .  

Therefore, calculating the random number 
2r  is correct. 

5.2 Security Proof: 

EB-FL ensures that leaders, supervisors and external adversaries cannot obtain the trap 

value while modifying the reputation value. 

Proof： 

In the Algorithm 2, because each supervisor only has the secret share of the trap door, we 

assume that at most only 1t −  supervisors may collude. According to the security of the 

Shamir secret sharing scheme, the supervisor will not obtain any information about the trap 

door value while modifying the reputation value. Then we prove that leaders will not get 

any information about trap door value. 

During modifying the reputation value, the leader gains 
1( )s i  and ( )secret i , namely 

1 1 1( ) ( ) i is i shr i b a sk a=   =   and .  

1sk a

2 22

1 1 1 2

1 1 1

(( ) ) ( )new newm m sk sk a m m sk sksum
r r r r

sum sk a sk

− + −  − + −
+ = + = + =



2 2( ) ( ) ( ) ( ) ( )new isecret i m i s i s i m m sk sk a= + − = − + −  
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Obviously, the leader cannot get any information about the trap door from 
1 isk a    and 

2( )new im m sk sk a − + −   . In addition, when calculating 
2r , the leader can get 

1sk a  

and 
2(( ) )newm m sk sk a− + −  . Because of the random number a , the leader does not 

know the specific value of the trap door in the whole process. This ensures that each 

modification of the reputation value needs to be completed by the leader and the supervisor. 

In the process of modifying the reputation value, the leader and the supervisor will not get 
the information about the trap door. Therefore, the process of modifying the reputation value 

is safe. External adversaries can only try to infer the trap value by intercepting the 

information sent by the leader and supervisors, but the analysis is the same as above. The 

adversary can only obtain the trap value with a disturbance at most and cannot get the actual 

value of the trap door, so our process of modifying the reputation value is safe. 

6. Experimental Result 

This section carries out simulation experiments for our scheme, mainly uses python to 

construct a simple blockchain, simulates the process of reputation value up-chain and 

reputation value modification in EB-FL, and calculates its corresponding time cost. Since 
our experiment is simulated on a single machine, we omit the communication time cost 

between the supervisor and the leader due to information transmission. We mainly focus on 

the time cost of calculating the new random number corresponding to the chameleon hash 
function through secret sharing technology and the time the miners spend to complete the 

consensus agreement. 

6.1 Analysis of Experimental Results: 

Experimental setup: In our experiment, we set up ten clients and then defined the number 

of supervisors as n =6. The parameters involved in the experiment are described as follows: 

the sizeable prime number q  used in the chameleon hash is randomly generated by the 

system, and its length is guaranteed to be 20. In addition, we need at least three supervisors 
to participate in modifying the reputation value. That is, the threshold of the Shamir secret 

sharing scheme is 3. In addition, in the POW consensus protocol, we set the difficult target 

to satisfy four zeros at the end of the hash value corresponding to the random number. 

Evaluation Index: 

• Single Score Time: To express our experimental results more clearly, we modify each 
client's reputation value and obtain the time cost corresponding to the new random 

number generated for each client to show the corresponding time difference when 

modifying the reputation value of different clients. 

• Multiple Score Time: When modifying reputation values, we sometimes must modify 

multiple reputation values simultaneously. Here, we use Multiple Score Time to 
represent the time cost of the leader and supervisors modifying multiple reputation 

values simultaneously. 

• Single Time: We use Single Time to represent the time cost of modifying the reputation 

value and completing the consensus. That is, the sum of the time cost of the new random 
number calculated by the leader and the supervisor and the time cost of the miner 
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completing the POW consensus agreement. 

• Multiple Time: We use Multiple Time to represent the time cost of multiple reputation 

value modifications and completing the consensus. That is, the sum of the time cost of 
the new random number calculated by the leader and supervisor and the time cost of the 

miner completing the POW consensus agreement in the multiple reputation value 

modification process. 

6.2 Performance Analysis: 

In our experiment, we mainly focus on the time cost of calculating the new random number 
in the process of transaction modification. After calculating the client's credit score, the 

client's index, reputation value, and time will be packaged into transactions, which will be 

stored on the blockchain. When the reputation value is incorrect, the leader and supervisor 

can work together to modify the reputation value. In Figure 3, we show the time consumed 
to calculate the new random number corresponding to each client when modifying the 

reputation value of the client. We can see that the time cost consumed is stable between 

0.991 ms ~ 0.998 ms, and the average time is 0.997 ms. We can see that the time cost 
consumed in calculating the new random number is low, which also shows that our scheme 

has high efficiency in calculating the random number. In addition, we show the time cost 

when modifying multiple transactions simultaneously in Figure 4. It can be seen that when 

only one transaction is modified, the corresponding time cost is about 0.998 ms. In contrast, 
when two transactions are modified, the corresponding time cost is about 1.975 ms, and 

when three transactions are modified, the corresponding time cost is about 2.792 ms. It can 

be seen that with the increase of transactions, the corresponding time cost of modifying 

transactions is also gradually increasing. This also corresponds to the results in Figure 3. 

  

In addition, miners must reach a consensus after calculating the new random number to 

modify the new reputation value. Here we use the POW consensus mechanis, and the 
difficult problem we set is that the last four digits of the hash value corresponding to the 

random number are 0. Figure 5shows the time cost of calculating the random number and 

completing the POW consensus in modifying each client's reputation value. It can be seen 

that although the time cost consumed by the client has an inevitable fluctuation, the overall 
difference does not exceed 1 ms, and the average time cost is 51.154 ms. Obviously, 

Figure 4 : Blockchain single transaction Figure 3 : Blockchain multiple 

transactions 
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compared with the time cost of completing the POW consensus, the time cost of calculating 

the random number can be ignored, which also shows that our reputation value modification 

scheme will not bring a significant time cost and is generally stable within an acceptable 
range. Figure 6 shows the time cost of calculating the random number and completing the 

POW consensus when modifying the reputation value of multiple clients simultaneously. 

Since miners only need to reach a consensus once when modifying multiple reputation 

values simultaneously, the increased time cost is only the time cost corresponding to 
calculating the random number as the number of transactions increases. It can be seen from 

the figure that when modifie multiple reputation values, the time cost of modifying multiple 

reputation values at one time will be much lower than the time cost of modifying different 
reputation values multiple times, because miners only need to reach a consensus once, 

which greatly reduces the time cost.  

The above experiment results show that the time cost caused by EB-FL's reputation value 

modification is generally stable within an acceptable range. 

 

 6.3 Functional Analysis: 

In this section, we mainly compare EBSC27, IMRF24, TrustedTe30 to highlight the effect 

of our scheme, as shown in Table 2. 

Table 2 : Scheme comparison 

 
Reputation value can 

be modified 

Reputation value 

can be modified 

multiple times 

Safety of trapdoor 

 

EB-FL √ √ √ 

EBSC √ × × 

IMRFL × × \ 

TrustedTed × × \ 

Figure 6 : Blockchain single transaction Figure 5 : Blockchain multiple transactions 
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The EBSC scheme mainly uses Shamir secret sharing technology and the original 

chameleon hash to construct a decentralized editable blockchain scheme. Although it can 

support the modification of information on the blockchain, the information on the 
blockchain can only be modified once because the modified trap door value will leak due 

to the characteristics of the chameleon hash. So it cannot guarantee the security of the trap 

door, Nor can it guarantee the safe modification of information on the blockchain. IMRFL 
and TrustedTed both store the client's reputation value in the blockchain, and the difference 

is that IMRFL adopts the alliance chain, while TrustedTed adopts the public chain. 

However, the reputation value of these two schemes cannot be modified. In the long run, it 
cannot achieve true fairness and will inevitably cause high storage costs. In contrast, our 

scheme EB-FL not only supports the modification of the reputation value but also ensures 

that the trap door will not leak during the modification of the reputation value, thus ensuring 

the security of the reputation value. 

It can be seen that our scheme has certain advantages in terms of efficiency and function. 

7. Summary: 

This paper proposes an editable blockchain scheme based on chameleon hash, which mainly 

improves the chameleon hash function of the single trapdoor. This scheme combined with 

the Shamir secret sharing technology to design a decentralized editable blockchain with 

multiple trapdoors. This blockchain is used to store the reputation value during the training 
process of federated learning, which can support the safe modification of the reputation 

value. At the same time, for the security and stability of the system, In combination with 

the dynamic secret sharing scheme, we regularly update the secret component of the trap 
door owned by the supervisor to ensure that the adversary cannot obtain the trap value by 

attacking the secret component of the supervisor. We use the editable blockchain to store 

the reputation value generated during the training process of the federated learning model, 
which can provide reference for other model training tasks in the future, and can also 

achieve incentives for the client, which can mitigate dishonest behaviors of clients during 

model training. 
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